USER MANUAL

DMC-2x00

Manual Rev. 1.7

By Galil Motion Control, Inc.

Galil Motion Control, Inc.

3750 Atherton Road

Rocklin, California 95765

Phone: (916) 626-0101

Fax: (916) 626-0102

Internet Address: support@galilmc.com
URL: www.galilmc.com

Rev 07/03

Using This Manual

This user manual provides information for proper operation of the DMC-2x00 controller. A separate
supplemental manual, the Command Reference, contains a description of the commands available for
use with this controller.

Y our DMC-2x00 motion controller has been designed to work with both servo and stepper type
motors. Installation and system setup will vary depending upon whether the controller will be used
with stepper motors or servo motors. To make finding the appropriate instructions faster and easier,
icons will be next to any information that applies exclusively to one type of system. Otherwise,
assume that the instructions apply to all types of systems. The icon legend is shown below.

Attention: Pertains to servo motor use.

Attention: Pertains to stepper motor use.

Attention: Pertains to controllers with more than 4 axes.

Please note that many examples are written for the DMC-2x40 four-axes controller or the DMC-2x80
eight axes controller. Users of the DMC-2x30 3-axis controller, DMC-2x20 2-axes controller or
DMC-2x10 1-axis controller should note that the DMC-2x30 uses the axes denoted as XYZ, the DMC-
2x20 uses the axes denoted as XY, and the DMC-2x10 uses the X-axis only.

Examples for the DMC-2x80 denote the axes as A,B,C,D,E,F,G,H. Users of the DMC-2x50 5-axes
controller. DMC-2x60 6-axes controller or DMC-2x70, 7-axes controller should note that the DMC-
2x50 denotes the axes as A,B,C,D,E, the DMC-2x60 denotes the axes as A,B,C,D,E.F and the DMC-
2x70 denotes the axes as A,B,C,D,E,F,G. The axes A,B,C,D may be used interchangeably with
A,B,C,D.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design
effective error handling and safety protection as part of the machinery. Galil shall not be liable or
responsible for any incidental or consequential damages.

Contents

UsIng ThiS MAnUALccooiiiiiiiiie ettt sttt ettt se ettt e enee e eneas ii
Contents i
Chapter 1 Overview 1

TNELOQUCTION ...ttt ettt ettt e e et e e e e sb e e st e besmeeeneesseenteenseeneennnans 1

OVEIVIEW OF MOTOT TYPCS...eeeietieitieie ettt ettt ettt ettt et ste et e eee e e b e nte e e eneeennans 1

Standard Servo Motor with +/- 10 Volt Command Signalcceceeeieiiienenennnne 2
Brushless Servo Motor with Sinusoidal Commutation............c.cccevererereneneeceeencn. 2

Stepper Motor with Step and Direction Signalsccoceeviiviinienieiiniinieneneecee, 2
OVErVIEW OF AMPIITIETS ...cvieiieiiiiieie ettt et steesre b e ersesesesreesseesseessaesnans 2
Amplifiers in Current MOdEcoveiieciieieiieiieieeie ettt eseeseesaeseeens 2
Amplifiers in VEloCity MOde........cccviviiiieriieiieieiieceesieeie ettt 3

Stepper Motor AMPIITIETS.......ccverieriieieeie ettt ees 3
DMC-2x00 Functional EISMENtSccccoiririririiieiiienieneseseceieeeet et 3
MICTOCOMPULET SECHIOMeeuvieniieieieiieetiestieieeieete e seesseeteeaeeseesseenseenseensesssesseenseensens 3

IMOtOT INEEITACE ... ettt et et e et enee s 3
COMMUINICATION ..ttt sttt ettt ettt et et et e teseeesse e beeseeeeeneesaeesseeeeeneeeneeeneenneens 4

GENETAL I/ ...ttt 4

SYStem EIBMENEScc.eiiiiiiiiiiieiieii ettt 4

IMIOTOT .ttt ettt et b et ettt s et s bt e s bt e bt e bt et sat e eh e e bt et e et et e et 4
AMPLTIET (DIIVET) 1uviiiiiiicie ettt ettt et ee s reesseesbeesseeesesseesaenseensens 4
BNCOAET ...ttt 5

WaAtCh DO TIMET ..c.veeiiieiieiieciiecieeett ettt ettt s reesbeebe e s e sesesseesaenseensans 5
Chapter 2 Getting Started 7

The DMC-2X00 Main BOArd..........ccceoieieiiieieiee ettt ens 7

The DMC-2000 Daughter BOardcooiiiiriiiiieieeeee et 8

The DMC-2200 Daughter BOardcooiiiiiiiiiiieeeee e 9

Elements YOu NEEdc.couiriiiiiiiiieeee ettt 10

Installing the DMC-2X00........c.cccueiiierieriieieiieiteseerte et ere et estee e eseessessaeseaesseesseensesssesssesseenns 12

Step 1. Determine Overall Motor Configuration............ccoeceevvereerieeiesveseeneenieennens 12
Step 2. Install Jumpers on the DMC-2X00..........cccorvieriiriierienieiieie e 13
Step 3a. Configure DIP switches on the DMC-2000.............cccoecvevieriiecrrrieniieieennnns 14
Step 3b. Configure DIP switches on the DMC-2100..........ccccccevierieriieireieniieieennens 15
Step 3c. Configure DIP switches on the DMC-2200..........cccoceveerieiieieieieieenene 15
Step 4. Install the Communications SOftware.............ccceeereiiierierieeeeeeeeieeee 16
Step 5. Connect AC Power to the Controller...........ccooveveeiieiinienieeeceeeeceeee 16
Step 6. Establish Communications with Galil Software..............cccceeevieviiiieiiiecnennnnn, 17
Step 7. Determine the Axes to be Used for Sinusoidal Commutation....................... 19

DMC-2X00

Contentse i

Step 8. Make Connections to Amplifier and Encoder.ccoocvevveviieciiecinnieniennen. 20

Step 9a. Connect Standard Servo MOtOTSc.ecverieriieriieie et 22
Step 9b. Connect Sinusoidal Commutation MOtOTS........ceeevvrverierirerieeireieeeeneeenenn 25
Step 9¢c. Connect StEP MOLOTScevuiiiriieriieiiieeite ettt 28
Step 10. Tune the SErvo SYSEIMc.eevieieriieiieieeie et eee e seee e ee e eeaeseeens 28
DeSign EXAMPIESeeueiiiieieeiieet ettt ettt ettt ettt b et ae e s esneene 29
N 1 10BN 11 2§ o J TSRS 29
Profiled IMOVE.....c..eeieee ettt ettt ettt 30
IMUIEIPIE AXES covevrieereiiieitieite ettt ettt e eteete et e e v e steesteesaeebeesseeseeessasssesseesseessessnessneees 30
Objective: Move the four axes independently.ocoooiiiriiiiiieiiniieeeceeee 30
INAEPENAENE IMOVES ...ceviiieiieeiie ettt ettt steeeete e teestaeestaeestaeessaeesseesnsneenseas 30
The motion parameters may be specified independently as illustrated below........... 30
POSItion INtEITOZATIONeeuvieeiiiieiieieeie ettt ettt et et e e e esbeesnesseeneas 30

The position error, which is the difference between the commanded position and the
actual position can be interrogated with the instruction TE.cccocovininnninnne 31
ADSOIULE POSILION ...cuveuiiiiiiiiiiiieiicciest ettt 31
VElOCIEY CONIOL ...ttt ettt ettt st e sbeeee e ene 31
Operation Under Torque Limit.........occoeiiiiiiiiiieiiet e 32
53173 (015 10 4 TSRS 32
Operation in the Buffer Modec.ccooiieiiiiiieeiiecieee e 32
Using the On-Board Editor.cocoiiiiiiiieieeeeee e 32
Motion Programs With LOOPSccueeuiririeieieiecesee et 33
Motion Programs with TTIPPOINEScc.eevieiirierieniieiieieeeeeee e esreere e eeeseee e eseeenns 33
CoNtrol Variablescceoieieieieierieseeee ettt 34
Linear INterpolationccueeveeuieriesiieieeiesiee st eie ettt teete e esaesaa e beeseesaeenneses 34
Circular INterpolationc.cccveruieriiecieeieeiesieeie ettt ettt enaeenaesneennes 35
Chapter 3 Connecting Hardware 36
OVETVIEW ittt ettt ettt ettt et e e e et e s b e b e e bt et st e ea e e sbe e bt et e emteesbeebeesbeesbeenbeenbeentesaeesaeene 36
Using Optoisolated INPULSooeiiiuirieieieeee sttt eee s 36
Limit SWItCh INPUL....c.eeiiiiiiiiiieee e 36
Home SWItch INPUL......cc.iiiiiiiiieee e 37
ADOTE TNPUL ...ttt et e e e s sae s e e sseenseenneenne e 37
RESEE INPUL. ...ttt ettt et et 38
Uncommitted Digital INPULSc.eeieriieriieiieie et 38
Wiring the Opto-Isolated TNPULScceiiiieiiiiiee e 38
The Opto-Isolation Common POintccoveeiiiiiiiiiiireeeeeeeee e 38
Using an [solated POWer SUPPLY........ooveriiiiieiieieeeeee e 39
Bypassing the Opto-I1SOIation:cccceeieierieiieisece e 40
ANALOZ INPULS ..ottt ettt et ettt b e b e nbe ettt saee e 40
KN 110) S TS gl L1175 1o SRS 40
T TNPULS ettt ettt ettt et e st e et e st e e sab e e sebeesabeessbeesbeessbeesaeenbeenseesnseesnsens 41
The Auxiliary Encoder INPULSccceovieiieiiiierieiieieeie ettt 41
TTL OULPULS «eeeetieeiteeeitteete et e et sit et e sttt e st e e sateesaaeestbeenaseesteenaseesteensteesaeenseessseenseesnseesnsens 42
GENETal USE OULPULS. .. .eeeieiieiieieeiieritett et et eeee st et eteeaesaesreesseeseensesnsesneesseenseenes 42
OULPUL COMPATE ..envveeniieeiiieiteeite ettt et e sttt et e bttt e s bt e e sbeesbbeebeesbaeesbeesabaeennees 42
EITOT OULPUL 1.ttt sttt ettt st e bt e sane e i 43
Extended I/O of the DMC-2X00 CONtroller..........coiieiieiiieiieieeiieeeeee et 43
Chapter 4 Communication 44
INEEOAUCTION ..ttt bbbt ettt b et s b e b 44
RIS232 POTES ..ttt sttt ettt b e bbbt bt e at et e et et s bt b ene s 44
RS232 - Main Port {P1} DATATERM.......cccoiiiinininininniceeteeee e 44
RS232 - Auxiliary Port {P2} DATASETcociiiiiiiiiineeeeeeeeneeseeeeene 44
ii e Contents DMC-2X00

*¥RS422 - Main Port {P1} ..ottt et 45

*RS422 - Auxiliary Port {P2}ccoocieiiiiieiecececeee et 45

RS-232 CONfiGUIAtIONocuveeieiieiieieeiesieteee ettt ettt te e eaesneenas 45
Ethernet Configuration (DMC-2100/2200 ON1Y) ...oeoieriirriieiieieeieeieieeie et 47
Communication ProtoCOIScccoiririririiieiiieeenes e 47
AQAIESSING ...ttt ettt ettt ettt ettt et esne et e teeneeene 48
Communicating with Multiple Devices.........ccovierieriiiirienieeeeeeee e 49

A b Lo] 1 YOS 51

Using Third Party SOFtWATE........c.ooiiiiiiieieieee e 51

Data RECOTA ...ttt ettt ettt ettt et et et ebeeneeaeeneenean 51
Data RECOTA MaP......iiiiiiiiieeiie ittt ettt ete e s veesete e saeessae e snbeesnseensaeennnas 52
Explanation of Status Information and Axis Switch Information...........c.ccccceceeeeneee 54

Notes Regarding Velocity and Torque Informationcccoovevvieienienierieeieenenne. 56

QZ COMMANA.......ccouiiiiiierieitieeieecteeetee et e et e eteeeeteeeteeeeteeeteeeeaeeesaeeaeeesseenneennes 56
Controller Response to COMMANGScceeriieriieiiieienieieeie e eteseeseere e saeseeseeesseeseennens 56
Unsolicited Messages Generated by Controller...........ocvevereeicieriienienieieeeeeieeeeee e 57
Galil Software Tools and LiDIari€s..........cccverieireiirierieeee ettt 57
Chapter 5 Command Basics 58
INEEOAUCTION ..ttt bttt et at ettt s bbb 59
Command SYNtax = ASCIL........ccueiieiiiiieiecie ettt ettt ste et beebessaesraesseesseesseesaessnens 59
Coordinated Motion with more than 1 axiS.......c..ceceeveriereniininienenieeccencene s 60
Command SYNtax - BINATYccccviiiiiiiieiieie ettt aesaeseesae e seenseenne e 61
Binary Command FOrmat...........ccooceerieiiieiiieiieiesieeieee et 61

Binary Command Tableccociiiiiiiiieieeeeee e 62
Controller Response t0 DATA ..ottt 63
Interrogating the CONtrOllercooiiiiiiiii e 64
Interrogation COMMANAScoueririiieiet ettt naeeens 64
Summary of Interrogation Commandsc..ccooeereerirninieiieneene e 64
Interrogating Current Commanded Values...........cccooivieiiieienienesesese e 64
OPCTANAS.......vieeiieiieeiieieeie et e et e st et e teebeesbeesbessaesseesseesbeessesseesssensaenseessesssesssessneses 64
ComMANd SUMMATYccueervieiieieeieeeesieeteereeresaeseesseesseesseesseessesssesseessesssesssesssesses 65
Chapter 6 Programming Motion 67
OVETVIEW ittt ettt ettt et ettt ee e s b e s b e b e et e bt st e ea e e sbe et e et e em bt es bt ebeesbeesbeenbeenbeentesneesaeene 67
Independent AXiS POSTHIONINGc.ceouiiiiieitiieit ettt ettt eeeeneenean 68
Command Summary - Independent AXISceoeriririnininieeese e 69
Operand Summary - Independent AXIScceecvereerieneerieeienieseerie e ereeeeseeesseenns 69
25 1111 o) (LTSRS 70
INdependent JOZGINGcccvieiieieeiieieeie ettt te ettt eete e te et e esbeesbesssessaesseesseensesseesseenns 71
Command SUMMAry = JOZZINGc.cecuerrirriierieeieiiesie sttt eie e eeseeeeeeseeeseseaesseennes 71
Operand Summary - Independent AXIScceevveriereerieerienienieseeseeree e eee e neeenes 72
251101 o) LTSS 72

Linear Interpolation MOdeoouiiiiiiiiiiiee ettt e 73
Specifying the Coordinate Planeccoooeiieiiiiiiiiieeeee e 73
Specifying Linear SEZMENTSc.ceoieiirieriieieieee ettt seee e 73
Additional CoOMMEANAS........cueiiiriiriiriie ettt ebe e eneens 74
Command Summary - Linear Interpolation............ccccocevienienieninienienieneeeee e 75
Operand Summary - Linear Interpolation............ccoceeeeieieieiierieneseseeeee e 75
25 1111 o) LTS STPR U TU PRSPPI 75

Vector Mode: Linear and Circular Interpolation MOtion............cceeverierieerierieieeneenieeieenens 78
Specifying the Coordinate Planeccoecvevieiieriieciiniecieceecee e 78
Specifying Vector SEZMENLSc.cccuerieriierieeieiieeiereeieeee e seee et eseenseeseesseesseensens 79
Additional COMMANAS.........coeeieriiiiiniiriinereee ettt 79

DMC-2X00 Contentse iii

Command Summary - Coordinated Motion SEquenceccoecveveerreecreeververneene. 80

Operand Summary - Coordinated Motion SEqUENCE........c.occvereerreerieriereerieeieeeneees 81
251101 o) LTRSS 81
ElECtIONIC GEATIINEcuvieueieeieeeieeiieiieie et etestesite st e st e et estesseasseesseenseensesssesssenseenseensesnsesnsesnnenn 83
Command Summary - Electronic Garingcc.ecevevereereeereeeieeniesieeieeiesnesenennes 84
EIECIIONIC CAIM ..ttt ettt ettt et a et et et e e st e es e e bt e beenteemaesneesneesneenne 85
Command Summary - Electronic CAMcocceeiiiiiiiinieeeeeeee e 88
Operand Summary - Electronic CAMcccccoviiiieiiiiieieieeeeee et 89
25211410 TSP 89

CONLOUT MOAE ...ttt ettt ettt et s et et e be e b e e bt saeeseeneenseseseeabesaeeneenean 90
Specifying Contour SEZMENLScceveeriieiiirieiierieneee ettt ettt eieesbeenaees 90
Additional ComMMANAS........ccuertiriiriiririnieteeet ettt 91
Command Summary - Contour Modeccccevieiiiiiiienieieeieeeeeeeseee e 92

General VelocCity Profilesccvecieciirieiieriieeee et 92
251101 o) L USSR 92

VITTUAL AXIS oottt ettt sttt b ettt a bbbt sbe bttt e b e b ebeeae s 95
Ecam master eXample.........ccoeouiiiiiiiiieiee e 95
Sinusoidal Motion EXamplec.coouieiiiiinieiieeee et 95

StepPer MOtOr OPETALIONeeivieiieieeit ettt eeee et et et eteeteseeesseesseeeeeneesneesseeseenseennesneens 96
Specifying Stepper Motor OPeration..........cceecueieereenienieeienienieenieeie et siee e 96

Stepper Motor SMOOhINGc.ceiiiiiiierieeee et 96
Monitoring Generated Pulses vs. Commanded PulSescceceeeneniiencncneeenne 96

Motion Complete TP POINt.......cccvvverrieriieiieieeierteeie et ere e e e sre e e ereeraeseeesseenaeenns 97

Using an Encoder with Stepper MOtOrS........ccuvvvviiiirierieiieieeeeeeeseeie e 97
Command Summary - Stepper Motor Operation..............c.eeverreerveecreseereerneesnesnennns 97
Operand Summary - Stepper Motor Operation.............ccoeceervereeereeeieneeneeseeseesnenens 98

Dual Loop (AUXiliary ENCOAET)eeviiiieieiiesiieiieie ettt sne e 98
Additional Commands for the Auxiliary Encoder...........ccccoevvvvieniieiiiienieieieeeee 99
Backlash CompPensationcceeieiieiieieeie et e 99
251101 o) (<SPS 99

MOtiON SIMOOtRINE ...coueieiiieieeiiee ettt ettt et s et e b e aeenee s 100
Using the IT and VT Commands:.........ccceeouiiierienieniiienienieneeieeieee e 101
EXAMPIE....eiiiiiieieee ettt et e et e e be e nbeessbaennaeens 101

Using the KS Command (Step Motor Smoothing):.........cccccevverieriecieiienienieeienns 102

HOIMUNE ...ttt sttt s e e bt et e e saeesaessa e beesseessasssessnesseeseenseensenssens 103
|25 1111 o) LTRSS 103
Command Summary - Homing Operation.............cceceeevereeereeniereeneeeeeeeeneeeneeennens 105
Operand Summary - Homing Operation............cecvereeriersiervereeneeneeeeeeeeseeseeeeens 105

High Speed Position Capture (The Latch Function)............ccooceevienieiiiiciinieieeceseeeeene 105
25 ;1101 o) LTSS 106
Chapter 7 Application Programming 107
OVEIVIEW ..ttt ettt ettt sttt b e eh e ee ettt b e s bt bt eb e at e st e e et e s bt sbeebeeaeest et ensenbesbeebeebeeneans 107
Using the DOS Editor to Enter Programs (DMC-2000 0nly)cccecvvevierieneenieecrenienieennns 107
Edit Mode Commands...........coueouererinirerieieieienene sttt 108
251101 o) LTSS 108
Program FOrmAat........coouiiiiiiiiiee et et et et 109
Using Labels in PrOGramsccccoooueiieiiinieit ettt 109

Special Labels.cc.oeiiieiiiieieiee et 109
Commenting PrOZIamSccoeeiruieriieiieiieeei ettt ettt eeeseeeneeas 110
Executing Programs - MUultitaskingccoceeoieieiieiieniieeese e 111
DebUZEZING PrOZIAIMScoueiiiiiiiieiietieieeee ettt ettt sttt et et e et e st e ntesbesbeebeeneennens 112
Trace Commands (DMC-2100/2200 0N1Y)....ccuererierireiereeeieeeiieeeie e 112

Error Code CommAnd...........cooueieriiriiiinieieceieierese ettt 113

Stop Code COmMMAN..........cceerrieriieiieieeiereeie ettt te e eeeeeeesreebeessessseseeesnes 113

iv e Contents DMC-2X00

RAM Memory Interrogation Commandscccooererereneeieienieneneneseseeeeeeeens 113

OPCTANAS.......tieevieeeeetieeiieeieete et e ete st e et e ste et e esbeesbeesbessaesseesseesseesseessesssesssanseensennsens 113
251101 o) (<P SSSRP 113
Program FIow COmMMANAScocieiiiriieiieniere ettt e e nseenne s 114
Event Triggers & TTiPPOINES........cecvieriiecieeieeiieiieieeteeeeseeseeesseeeeeresneesseeseenseensens 114
Conditional JUMPSccueeiieiiiiiieeee ettt 118
If, Else, and Endifcccooiiiiii e 120
SUDTOULINES ...ttt ettt et et e st e st e sttt e e ene e e st et e enteenteeneeeneesnes 122
Stack ManipUIAtioN..........ceevvieirieiiieiieieeeee ettt re b beeeseeeaesaeeeas 122
AULO-Start ROULINEo.eeiuiiiiiiiiiiiiieteeieeeete et 122
Automatic Subroutines for Monitoring Conditions..........c.ceeceverereeereeeeeeneeene 123
Mathematical and Functional EXPreSsionsccecverieciercieiienienieeieeeeseesieeseesesvesseesnens 128
Mathematical OPEIatOrSccevveeriieriieiieieeiereereete e seestesreesseeseesseessesseeseensens 128
Bit-WiSE OPETALOTS........eeiieeeeeeieiieieeteeteeitestee e etesaeseeesseesseensessresseesseenseensesssenseens 128
FUNCHIONS ..ttt ettt s st 130
VATTADIES ...ttt ettt sb bttt et a et be e eaeeae 130
Programmable Variablescccoeiiiieiieiieieceeeee e 131
(05157624 Lo USSP 132
Special Operands (KeyWords)ccoeoieiieienienieieeeee e 132
F N § v) £ OO USROS 133
DEfINING ATTAYS ...vieutiiiieiie ittt et sttt ettt seeesaeens 133
Assignment of ATTay ENtrIescccoeieieieiiiieiesesese e 133
Uploading and Downloading Arrays to On Board Memory...........ccccceevevvenirennns 134
Automatic Data Capture iNt0 ATTAYScceeeverreerreerieeierieseesieesseeeeeeesseesseessesssesseens 134
Deallocating ArTay SPACE.......ccevieruieriieiieieriesteeteeteeeeseesteesseeseesesseesseesseesseessens 136
Input of Data (Numeric and String)ccceceriierierieiieieeeereese ettt aeseeeneees 136
INPUL OF DALA.....eeeiiiiiciece ettt et ettt nne s 136
Operator Data Entry MOdecoovieiieiieieeiecieeeieee et 137
Using Communication INteITUPLt........cocveriirierieieeeieeee e 138
Output of Data (NUMeric and StrNE)cocveruieieeieiiereee et eeas 139
SENAING MESSAZES ...nveeuvienieeeietieiieteete et ee st et et eeesseestee et eneeeneeeseesteenteensesseesneennes 140
Displaying Variables and ATTaYS.........cceoeeieriereriereieseececeieee e 141
Interrogation COMMANAScoueiiiiiiiiieieiee ettt ene e 141
Formatting Variables and Array EICmentscccceeeveveierienieniieieeieseeieeve e 143
Converting to USET UNILS........cceoieriieriieiieieeiiesieeieeteeeesee e esaeeveeseesseesseesseesseessens 144
HArAWATe 1/ ..ottt ettt b et 144
DAl OULPULS ...ttt ettt ettt e e ae s e saeesseesseenseensessaanseenseensens 144
DiGIal INPULSeeutieiiecie ettt ettt e e te e e sseesseesseenseenaeenaenseens 145
The Auxiliary Encoder INPULSccuveiieiirieieieee e 146
Input Interrupt FUNCHONcooiiiiiiiiiiieece e 146
ANALOG INPULS 1.ttt et eas 147
Extended I/O of the DMC-2X00 CONtrollercecieierierieeeie et 148
Configuring the I/O of the DMC-2X00........cccoiiiiiiiiieeeieieee e 148
Saving the State of the Outputs in Non-Volatile Memory...........ccccoeeevinerceennnee. 149
Accessing Extended I/Oooooiiiiiiiiieeee e 149
Interfacing to Grayhill or OPTO-22 G4PB24coovveiiiieeieieeee e 150
EXampPle APPIICALIONS.......ccierrieiieieiieiieseeteesteeteeeestee st ebeesseessessaesseeseesseessesssesseesseesseenses 150
WITE CULEET ...ttt ettt sttt e b ettt a et sbe b b aeene 150
A-B Table CONtrOlIET.ccviiiiiriirieniireeieeiceiet ettt 151
Speed Control bY JOYSLICKocuviriieiieiieiecieeet e 153
Position Control by JOYSHCK.......c.ccieriieriieiieiecieieeie e 154
Backlash Compensation by Sampled Dual-Loopccccoeveriinienienieieieeieceee 154
INELOQUCTION ...ttt ettt ettt e e st e sbe et e teeneesaeenaeeneeeneeas 157
Hardware PTOtECLIONc.oiuiiiiitiiiietieieiee ettt ettt ettt ettt e e sbesbesaeeneeneene 157
Output Protection LiNES..........c.ecvieieirieiiieiiicieceesie et sre e eane s veesve s 157
INPUt ProteCtion LINEScceevuieiiiiiiiieiieeieere ettt eveesre e saeesveesveenseenneas 157

DMC-2X00

Contentse v

SOTIWATE PIOTECTIONvveiiieviiieciiicc e et e e e et e e et e e e e e e eaaeeesenaeeesenneeas 158

Programmable Position LImitsccoecueviieriieiiieciiiieiieseesie e esve e 158
OFf-ON-ETTOT ..ottt 159
Automatic Error ROULINEccoeviiriiiiiiiiiiiciceeses e 159

Limit SWitch ROULINEoviiiiiiiiiiiiiiiicicce et 160
Chapter 9 Troubleshooting 161
OVEIVIEW ...ttt ettt ettt ettt b e bt ea et e st e st et e e bt bt eb e e at e st et et e e bt sb e ebeeaees b et ensesbenbeabesbeaneans 161
INSEATTATION ...ttt ettt sb e bbbttt ettt eneene 161
COMIMUINICALION. ...ttt sttt ettt st b e bt b et e e et e b e s bt sbeebeeaeeste e et e sbesbeebesseeneens 162
T 21 031 11 2SRRIt 162
(05155 ¢ (o) s ST TRR 162
Chapter 10 Theory of Operation 163
OVEIVIEW ..ttt sttt ettt ettt b e eh e eh et et et s bt bt eb e ae e st e s et e e bt sb e ebeeaeea s et ensenbenbeabesbeaneans 163
Operation of Closed-Loop SYSIEMSccvvirieriieiieiieieeiese ettt eee e sreesaeere e eseesseesseessees 165
SYSIEM MOACIINGveeiieiieiieieciesie sttt ettt ettt et e e e e te e beebeessesssessaessaesseenseensenssenns 166
MOtOT-AMPITICT ...ttt sttt s e e eseenseas 167

BNCOAET ...ttt 169

DIAC ettt ettt 170

DiIGIal FAIEOT ..ottt e 170

/0) = D SRS 171

SYSTEIM ANALYSIS.eeteetieiieieeie ettt ettt ettt e st e et enteeseeebeesbe e bt enseeneesneesneesseeneeneenne 172
System Design and COmMPENSAtION.....c..eeuiriiiierieniieieeie ettt ettt st siee e eae e e 174
The Analytical Method.ccoiiiiiiiiiieeee e 174
Appendices 177
Electrical SPeCifiCationsc.eccveiieriieriieieeiesieie ettt eae e sseesseeseenseeneessaenseensens 177
N TS 40T Oe] 112 (o) AR 177

NS o) 15 o 00 1 s (o) EO TSSO 177

INPUL / OULPUL ..ottt ettt et et esne e e eneeas 177

POWET ...ttt ettt et ettt et et 178
Performance SPeCTfiCAtIONSccuiviiieiieeieeie ettt et e s reeebeessbeeenseesebeennseens 178
Minimum Servo Loop Update Time:ccceeeevieriiieriiieniieeiie et cieeeveesvee e 178

Fast Update Rate MOAEccveiiiiiiiiicieceeceese ettt st saenseenne s 179
Connectors for DMC-2x00 Main Board...........c.cooeveeiiienienininiicieceeieree s 180
DMC-2x00 Axes A-D High Density CONNECtOr..........ccvevueeveeienieireieeveeeeeneeenenn 180
DMC-2x00 Axes E-H High Density COnnector............ccevveevereeneenieenieeeeneeneeeneens 181
DMC-2x00 Auxiliary Encoder 36 Pin High Density Connectorcccccveeueenee.. 182
DMC-2x00 Extended I/O 80 Pin High Density Connectorcccccecueeveeeeenueenen. 182
RS-232-Main POrtcoouiiiieii e 184
RS-232-AUXiliary POrt........ccooiiiiiiei e 184

USB - In USB = OUL.ii ettt eneene 184
BHREINET ...ttt 185

Cable Connections for DMC-2X00cceieriiiriieetieeeieeeie ettt 185
Standard RS-232 SpecifiCationscccvevvivceeiieniieniieie et se e e 185
DMC-2x00 Serial Cable SpecifiCations...........cccuerveerieeriercieiierieenieeieeeeeeeseeeeeennens 186

Pin-Out Description for DIMC-2X00c.ccciiierieiiieiieiesiesieeie e seesree e esessseseesseesseessens 188
Jumper Description for DMC-2X00..........c.cecuerierieriieieeieeiesieesieeeeseeseee st eseenseeeesseenseensens 190
Dimensions for DMC-2X00cc.eeiiiiiininininenieeetentenieste sttt st s sbe e eeeens 191
AccesSOTiEs AN OPLIONS........eevieieeeieiietieieeiestestesteesseeeesaeseeesseeseenseessesssesseesseensesnsessnesnes 192
ICM-2900 Interconnect MOAULEcoceeiiieiiieieriieeee et 193
TCM-2900 DIaWING:eeeveeeeeieenieetieetieteeieeteesee st e steeeeseesaeeseeesseeteeneeeneesseaseeneeas 196
ICM-2908 Interconnect MOAULEoceeiieiiiiieeieee et 197
vi e Contents DMC-2X00

TCM-=2908 DIAWING:eevvievieiieirieriesteesieesteeseseesseesseessessesssessaesseesseessesssesseessesssens 198

PCB Layout of the ICM-2900:cccoeiiieiiieieciereenie et 199
ICM-1900 Interconnect MOAULEcc.coerireriririeieieeere sttt 200
FEALUIES ..ottt sttt 200
ICM-1900 DIaWING:eeeevieneieiieeieeiiestieteesteeteseaesseesseessesaesaeesseesseeseenseessesseenseensens 203
AMP-19x0 Mating Power AMPIIIETSoceiriieiiiieieeiee e 203
FRALUIES ...ttt et ettt e e et eeneeeneeeneens 203
SPECITICALIONS ...ttt ettt ettt e e e s e e b e aeeee e ene 204
Opto-Isolated Outputs for ICM-2900 / ICM-1900 / AMP-19X0.........cceevvevrrecreneeirerreerennn. 204
Standard Opto-Isolation and High Current Opto-isolation:............cccccecerereeeennen. 204
Configuring the Amplifier Enable for ICM-2900 / ICM-1900..........cccceeirieieiieneeseeene 205
SLAEN OPHON: ...tiitiiiieiieiecieciteste et ete et st e steebeesbeesaeesaesseeseessesssessnesseesseesseensenns 205
-Changing the Amplifier Enable Voltage Level:........cccocovveveiienieniiiieieceeieee 205
IOM-1964 Opto-Isolation Module for Extended I/O...........cccevviiriiiiiiniiieceeeeeeeee 206
DIESCIIPLION: ..evtieeiieieeie ettt ettt et et et e e etessaessaesaeesseenseenseenseessenseenseensenn 206
OVEIVIEW ..ttt sttt ettt ettt sttt et ettt ettt b e sbeebe et e et et e st e sbe bt eaeeae 206
Configuring Hardware Banks...........cccoocieiiiiiiieiieeeeee e 207

DigItal INPULS ...ttt ettt ettt et enee s eneens 208

High Power Digital OULPULScovuieiiieiieieeieciiecieeie et 209
Standard Digital OULPULSc.eeeeiiiiieieetieiieee ettt 210
Electrical SPecifiCationsccueeieriieiiieiieieieesie ettt ebe v s eeeaeesaeas 211
Relevant DMC Commands..........coeeeeieieienienesieseeie et 212

Screw Terminal LIStINGc.cccverieriieiiiiieiiesie ettt ere e eee st sre e esesenesns 212
CB-50-100 Adapter BoArd...........ccceeeiiiieiieiiecieeie ettt e sre s s 215
COMMECTOTS c.eeiteieete ettt ettt ettt ettt et e b et st sbeesbe e bt et e eatesbaesbeebeenbeas 215
CB-50-100 DIaWINg:ccueevuiereeereeiertietiesieeaesaeseesseesseessessesseesseesseensesssesssesseessees 218
CB-50-80 Adapter BOArd..........c.cecuerieiieiieiieie ettt sttt enne s 219
COMNECTOTS: ...ttt ettt ettt sttt et e e s aee st e saeeae et eaneeanenbeeneennees 220
CB-50-80 DIaWINg: ...cueeiieiieiiieiiesieeie ettt ettt sttt sttt et e e s e seeenteeneeeneens 222
TERM-1500 Operator Terminalcccoovevieiieiieieeeieseeeeie et 224
FRALUIES ...ttt ettt ettt eneeeneeeneens 225
DIESCIIPLION ..ottt e et et e et e e beesbeeraesaeesreebeesseeaseessessseseensens 225
Specifications - Hand-Heldccocoueviiiieiiiiiicicceeeeceeeeee e 225
Specifications - Panel MOUNL...........ccceoieriieciieiinieiee ettt 226

Keypad Maps - Hand-Held............ccocouieiiiiiiieieece et 226

Keypad Map - Panel Mount — 6 COIUMNS X 5 TOWSccvvvieiieriieiieieeieeeeieeveennns 227
CONTIGUIATION. ...eeuteentieiieeie ettt ettt ettt ettt e eetessaesseesseesseensesneesseesseanseensennsens 228
FUNCLION KEYS...oouiiiiiiieeie ettt sttt e s e e ensean 229
Input/Output of Data — DMC-2x00 Commandsccceevereeriereeneeeeeneeneeeneeeeens 229
Ordering INfOrmation...........coeeiviiiieriieeee et 230
Coordinated Motion - Mathematical ANalySis.........cccecveieriirirrieie e 231
Example- Communicating with OPTO-22 SNAP-B3000-ENETcccooiniiniieiiieneenee. 234
DMC-2X00/DMC-1500 COMPATISONveeuvieerierieireereereereaeresteesseeseeseeseesseesseesseessesssessesssens 237
List 0f Other PUDIICALIONSc..eiuiitiitiriieeieieiete ettt ettt ene e 238
TTAINING SEIMINATS. ... eeuiiietiiteete ettt ettt ettt et et es et e e teseesteseeebeeseensensensesesbeebeeneeneeneans 238
CONACHING US ...iviiiiiiieiieie ettt ete ettt e st et e et e et eetaesseesbeesbeessesssesseesseesseesseessesssensenssens 239
WARRANTY ettt et ettt et sttt be bbbt e e e et 240
Index 241
DMC-2X00 ® vii

Chapter 1 Overview

Introduction

The DMC-2x00 Series are Galil’s highest performance stand-alone controller. The controller series
offers many enhanced features including high speed communications, non-volatile program memory,
faster encoder speeds, and improved cabling for EMI reduction.

Each DMC-2x00 provides two communication channels: high speed RS-232 (2 channels up to 115K
Baud) and Universal Serial Bus (12Mb/s) for the DMC-2000 or 10BaseT Ethernet for the DMC-2100
and 100BaseT Ethernet for the DMC-2200.

A 4Meg Flash EEPROM provides non-volatile memory for storing application programs, parameters,
arrays and firmware. New firmware revisions are easily upgraded in the field.

The DMC-2x00 is available with up to eight axes in a single stand alone unit. The DMC-2x10, 2x20,
2x30, 2x40 are one thru four axes controllers and the DMC-2x50, 2x60, 2x70, 2x80 are five thru eight
axes controllers.

Designed to solve complex motion problems, the DMC-2x00 can be used for applications involving
jogging, point-to-point positioning, vector positioning, electronic gearing, multiple move sequences,
and contouring. The controller eliminates jerk by programmable acceleration and deceleration with
profile smoothing. For smooth following of complex contours, the DMC-2x00 provides continuous
vector feed of an infinite number of linear and arc segments. The controller also features electronic
gearing with multiple master axes as well as gantry mode operation.

For synchronization with outside events, the DMC-2x00 provides uncommitted I/O, including 8 opto-
isolated digital inputs (16 inputs for DMC-2x50 thru DMC-2x80), 8 digital outputs (16 outputs for
DMC-2x50 thru DMC-2x80), and 8 analog inputs for interface to joysticks, sensors, and pressure
transducers. The DMC-2x00 also has an additional 64 I/O. Further I/O is available if the auxiliary
encoders are not being used (2 inputs / each axis). Dedicated optoisolated inputs are provided for
forward and reverse limits, abort, home, and definable input interrupts.

Commands can be sent in either Binary or ASCII. Additional software is available for automatic-
tuning, trajectory viewing on a PC screen, CAD translation, and program development using many
environments such as Visual Basic, C, C++ etc. Drivers for DOS, Linux, Windows 3.1, 95, 98, 2000,
ME and NT are available.

Overview of Motor Types

The DMC-2x00 can provide the following types of motor control:

1. Standard servo motors with +/- 10 volt command signals

2. Brushless servo motors with sinusoidal commutation

3. Step motors with step and direction signals

4. Other actuators such as hydraulics - For more information, contact Galil.

The user can configure each axis for any combination of motor types, providing maximum flexibility.

DMC-2X00

Chapter 1 Overview e 1

Standard Servo Motor with +/- 10 Volt Command Signal

The DMC-2x00 achieves superior precision through use of a 16-Bit motor command output DAC and
a sophisticated PID filter that features velocity and acceleration feedforward, an extra pole filter and
integration limits.

The controller is configured by the factory for standard servo motor operation. In this configuration,
the controller provides an analog signal (+/- 10 volts) to connect to a servo amplifier. This connection
is described in Chapter 2.

Brushless Servo Motor with Sinusoidal Commutation

The DMC-2x00 can provide sinusoidal commutation for brushless motors (BLM). In this
configuration, the controller generates two sinusoidal signals for connection with amplifiers
specifically designed for this purpose.

Note: The task of generating sinusoidal commutation may be accomplished in the brushless motor
amplifier. If the amplifier generates the sinusoidal commutation signals, only a single command signal
is required and the controller should be configured for a standard servo motor (described above).

Sinusoidal commutation in the controller can be used with linear and rotary BLMs. However, the
motor velocity should be limited such that a magnetic cycle lasts at least 6 milliseconds with a standard
update rate of 1 millisecond. For faster motors, please contact the factory.

To simplify the wiring, the controller provides a one-time, automatic set-up procedure. When the
controller has been properly configured, the brushless motor parameters may be saved in non-volatile
memory.

The DMC-2x00 can control BLMs equipped with Hall sensors as well as without Hall sensors. If Hall
sensors are available, once the controller has been setup, the brushless motor parameters may be saved
in non-volatile memory. In this case, the controller will automatically estimate the commutation phase
upon reset. This allows the motor to function immediately upon power up. The Hall effect sensors
also provide a method for setting the precise commutation phase. Chapter 2 describes the proper
connection and procedure for using sinusoidal commutation of brushless motors.

Stepper Motor with Step and Direction Signals

The DMC-2x00 can control stepper motors. In this mode, the controller provides two signals to
connect to the stepper motor: Step and Direction. For stepper motor operation, the controller does not
require an encoder and operates the stepper motor in an open loop fashion. Chapter 2 describes the
proper connection and procedure for using stepper motors.

Overview of Amplifiers

The amplifiers should be suitable for the motor and may be linear or pulse-width-modulated. An
amplifier may have current feedback, voltage feedback or velocity feedback.

Amplifiers in Current Mode

Amplifiers in current mode should accept an analog command signal in the +/-10 volt range. The
amplifier gain should be set such that a +10V command will generate the maximum required current.
For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V.

2 eChapter 1 Overview DMC-2X00

[rn]

Amplifiers in Velocity Mode

For velocity mode amplifiers, a command signal of 10 volts should run the motor at the maximum
required speed. The velocity gain should be set such that an input signal of 10V runs the motor at the
maximum required speed.

Stepper Motor Amplifiers

For step motors, the amplifiers should accept step and direction signals.

DMC-2x00 Functional Elements

The DMC-2x00 circuitry can be divided into the following functional groups as shown in Figure 1.1
and discussed below.

WATCHDOG TIMER

ISOLATED LIMITS AND
HOME INPUTS

———

64 Configurable I/O

USB/ETHERNET 68331 HIGH-SPEED 4~ MAIN ENCODERS
MICROCOMPUTER L N| MOTOR/ENCODER 44— AUXILIARY ENCODERS
WITH - INTERFACE » +- 10 VOLT OUTPUT FOR
RS-232/ . 4 Mgg RAM o FOR SERVO MOTORS
Meg FLASH EEPROM .
RS-422 8 ABCD PULSE/DIRECTION OUTPUT
s

«—

1/0 INTERFACE

FOR STEP MOTORS

HIGH SPEED ENCODER

»
>

|

8 UNCOMMITTED
ANALOG INPUTS

|

8 PROGRAMMABLE,
OPTOISOLATED
INPUTS

HIGH-SPEED LATCH FOR EACH AXIS

Figure 1.1 - DMC-2x00 Functional Elements

Microcomputer Section

The main processing unit of the DMC-2x00 is a specialized 32-Bit Motorola 68331 Series
Microcomputer with 4 Meg RAM and 4 Meg Flash EEPROM. The RAM provides memory for
variables, array elements and application programs. The flash EEPROM provides non-volatile storage
of variables, programs, and arrays. It also contains the DMC-2x00 firmware.

Motor Interface

Galil’s GL-1800 custom, sub-micron gate array performs quadrature decoding of each encoder at up to
12 MHz. For standard servo operation, the controller generates a +/-10 volt analog signal (16 Bit
DAC). For sinusoidal commutation operation, the controller uses two DACs to generate two +/-10
volt analog signals. For stepper motor operation, the controller generates a step and direction signal.

|

8 PROGRAMMABLE
OUTPUTS

COMPARE OUTPUT

DMC-2X00

Chapter 1 Overview ¢ 3

Communication

The communication interface with the DMC-2x00 consists of high speed RS-232 and USB or high
speed RS-232 and Ethernet. The USB channel accepts based rates up to 12Mb/sec and the two RS-232
channels can generate up to 115K.

General I/O

The DMC-2x00 provides interface circuitry for 8 bi-directional, optoisolated inputs, 8 TTL outputs and
8 analog inputs with 12-Bit ADC (16-Bit optional). The DMC-2x00 also has an additional 64 I/O and
unused auxiliary encoder inputs may also be used as additional inputs (2 inputs / each axis). The
general inputs can also be used as high speed latches for each axis. A high speed encoder compare
output is also provided.

The DMC-2x50 through DMC-2x80 controller provides an additional 8 optoisolated inputs and 8 TTL
outputs.

System Elements

As shown in Fig. 1.2, the DMC-2x00 is part of a motion control system which includes amplifiers,
motors and encoders. These elements are described below.

Power Supply

Computer DMC-2x00 Controller Amplifier (Driver)

Encoder Motor

Figure 1.2 - Elements of Servo systems

Motor

A motor converts current into torque which produces motion. Each axis of motion requires a motor
sized properly to move the load at the required speed and acceleration. (Galil's "Motion Component
Selector" software can help you with motor sizing). Contact Galil at 800-377-6329 if you would like
this product.

The motor may be a step or servo motor and can be brush-type or brushless, rotary or linear. For step
motors, the controller can be configured to control full-step, half-step, or microstep drives. An encoder
is not required when step motors are used.

Amplifier (Driver)

For each axis, the power amplifier converts a +/-10 volt signal from the controller into current to drive
the motor. For stepper motors, the amplifier converts step and direction signals into current. The
amplifier should be sized properly to meet the power requirements of the motor. For brushless motors,

4 eChapter 1 Overview DMC-2X00

an amplifier that provides electronic commutation is required or the controller must be configured to
provide sinusoidal commutation. The amplifiers may be either pulse-width-modulated (PWM) or
linear. They may also be configured for operation with or without a tachometer. For current
amplifiers, the amplifier gain should be set such that a 10 volt command generates the maximum
required current. For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V.
For velocity mode amplifiers, 10 volts should run the motor at the maximum speed.

Encoder

An encoder translates motion into electrical pulses which are fed back into the controller. The DMC-
2x00 accepts feedback from either a rotary or linear encoder. Typical encoders provide two channels in
quadrature, known as CHA and CHB. This type of encoder is known as a quadrature encoder.
Quadrature encoders may be either single-ended (CHA and CHB) or differential (CHA,CHA- and
CHB,CHB-). The DMC-2x00 decodes either type into quadrature states or four times the number of
cycles. Encoders may also have a third channel (or index) for synchronization.

For stepper motors, the DMC-2x00 can also interface to encoders with pulse and direction signals.

There is no limit on encoder line density, however, the input frequency to the controller must not
exceed 3,000,000 full encoder cycles/second (12,000,000 quadrature counts/sec). For example, if the
encoder line density is 10000 cycles per inch, the maximum speed is 300 inches/second. If higher
encoder frequency is required, please consult the factory.

The standard voltage level is TTL (zero to five volts), however, voltage levels up to 12 volts are
acceptable. (If using differential signals, 12 volts can be input directly to the DMC-2x00. Single-
ended 12 volt signals require a bias voltage input to the complementary inputs).

The DMC-2x00 can accept analog feedback instead of an encoder for any axis.

To interface with other types of position sensors such as resolvers or absolute encoders, Galil can
customize the controller and command set. Please contact Galil and talk to one of our applications
engineers about your particular system requirements.

Watch Dog Timer

The DMC-2x00 provides an internal watch dog timer which checks for proper microprocessor
operation. The timer toggles the Amplifier Enable Output (AMPEN) which can be used to switch the
amplifiers off in the event of a serious DMC-2x00 failure. The AMPEN output is normally high.
During power-up and if the microprocessor ceases to function properly, the AMPEN output will go
low. The error light will also turn on at this stage. A reset is required to restore the DMC-2x00 to
normal operation. Consult the factory for a Return Materials Authorization (RMA) Number if your
DMC-2x00 is damaged.

DMC-2X00 Chapter 1 Overview 5

THIS PAGE LEFT BLANK INTENTIONALLY

6 eChapter 1 Overview DMC-2X00

Chapter 2 Getting Started

The DMC-2x00 Main Board

AXES A-D

AXES E-H 100 pin high density connector E;:,’;r
100 pin high density connector AUX Encoder inputs AMP part # 2-178238-9 LED"
AMP part # 2-178238-9 36 pin high density connector N
‘ 950" |
| N N N J
Stepper Motor 9 1 AXES E-H J5 AUX ENCODERS U1 AXES AD (XW) @ D sw1
configuration O
e] 3o | 1 s e e

S\ s

] - - a0

sur [] GLs0 | Swew)

GL-1800 SMG SMD(W) ADB7806
OPT2 JP5
JP7
|:| DMC-2000 O
GALIL MOTION CONTROL l:l
Jumper to
e |1 | O]
optoisolators to
onboard 5V
supply \ JP3 Motorola
LSCom MASTER RESET 68331
INCOM MASTER R]
/ dagp YSWSWI2V EERPROM
\ \ evccee L]
)
MADE IN USA x O O

/

Power connector Microprocessor

6 pin Molex

Communications Serial number label
Daughterboard

connector

Jumper Master
Reset to clear
EEPROM

Figure 2-1 - Outline of the main board of the DMC-2x00

Reset
Switch

Stepper motor
configuration
header

Analog to Digital
Converter IC
7806 - 12 bit
7807 - 16 bit

5.80"

DMC-2X00

Chapter 2 Getting Started

o7

The DMC-2000 Daughter Board

MAllj'\é Sge'l\';la;llsort Configuration DIP USB type A
AUX Serial port uss WP{B B Switches connector (x2)
DB-9 Female connector

80 pin high
density connector
for extended 1/0

\ \ \ v 7 |
T B nn 7T T

AUX J6 MAIN J5 CrPrP>w0IxZ J3 EXTENDED /O
8s no=N®ORHOF
% g JT USBIN O 5 J2 usBoUT
zans © S EHEH T
ErEsl & srEep
u2 U7 Ue
u1 |:| |:|
< <
o) e} 2.53"
(o] o]
. L
. U9
7 / CMB-2001 Rev
USB DAUGHTER CARD
RS-232 buffer GALIL MOTION CONTROL]
.
Cs = O b1 v
> A ¢
3]
m
=z
c 1 Ja
4 A1
B1
c1
! /
USB Communications
100 pin connector Status LED
(attaches to DMC-2000
Main board)
Figure 2-2 - Outline of the DMC-2000 Daughter Board
DMC-2X00

8 e Chapter 2 Getting Started

The DMC-2200 Daughter Board

10 BASE-F 100 BASE-T MAIN SERIAL PORT 80 PIN HIGH DENSITY
TRANSMITTER DB-9 MALE CONNECTOR FOR
10 BASE.2 AUX SERIAL PORT EXTENDED /0
DB-9 FEMALE CONFIGURATION COMMUNICATIONS
10 BASEF DIP SWITCHES STATUS LED
RECEIVER
~ T H |
; D1 D2
) ”
JP5
I R — e I
O u1s u16 = HH |:|
1 CMB-21002 REV A
. P EE S ; GALIL MOTION CONTROL |:|
3 EEEEEEE
] JP5 |:| |:|
] ; [EEREE -]
L L[]
A
81
7
Y [O
100 PIN
CONNECTOR
(ATTACHES TO
DMC-2000 MAIN
BOARD)
9.5"

Figure 2-3B - Outline of the DMC-2200 Daughter Board

DMC-2X00 Chapter 2 Getting Started ¢ 9

Elements You Need

IOM-1964-80
Provides Opto-Isolation
and Interconnection for
Extended I/O

Auxiliary Serial Port
Connection
(System Dependent
Cable)

Cable 9-PinD
Main Serial Port to

I0M-1964-80

BoEBREE:

0o

| I

[T [T
7

oo o

ICM-2900
Provides Connection to
Signals for Axes E-H

| S—

g CABLE-80-1M (1Meter)

OR
CABLE-80-4M (4Meter)

Computer

O

CABLE-USB-2M
OR
CABLE-USB-3M

J

J

CABLE-100-1M
OR

CABLE-100-4M

=
A

ICM-2900

ICM-2908

Provides Connection to All
Auxiliary Encoder Signals

ICM-2908

=l======
===

T

DMC-2000

Power Cable (Included

with the controller)

Figure 2-4 Recommended System Elements of DMC-2000

ICM-2900
Connection to
Signals for Axes A-D

ICM-2900

CABLE-36-1M (1METER)
OR
CABLE-36-4M (4METER)

10 e Chapter 2 Getting Started

DMC-2X00

I0M-1964-80
Provides Opto-Isolation
and Interconnection for

ICM-2900

Extended I/O % 10M-1964-80 Provides Connection to
Signals for Axes E-H
100/10 BASE-T
Cable = ICM-2908
% 7 Provides Connection to All
Auxiliary Serial Port [Auxiliary Encoder Signals
Connection %
(System Dependent %
Cable) S0000 1CM-2900
ICM-2900 Connection to
(J I Signals for Axes A-D
@ (7 CABLE-80-1M (1Meter)
@ GABLE 50.4M (4Meter)
Cable 9-PinD = / J
Main Serial Port to] @ CABLE-100-1M
Computer OR
(SR CABLE-100-4M
9
o)
10
DMC-2000 —J
CABLE-36-1M (1METER)
Power Cable (Included OR
with the controller) CABLE-36-4M (4METER)
Figure 2-5 Recommended System Elements of DMC-2100/DMC-2200
For a complete system, Galil recommends the following elements:
la. DMC-2x10, 2x20, 2x30, or DMC-2x40 Motion Controller
or
1b. DMC-2x50, 2x60, 2x70 or DMC-2x80
2a. (1) ICM-2900 and (1) CABLE-100 for controllers DMC-2x10 through DMC-2x40
or
2b. (2) ICM-2900's and (2) CABLE-100’s for controllers DMC-2x50 through DMC-2x80.
or
2c¢. An interconnect board provided by the user.
3. (1) IOM-1964 and (1) CABLE-80 for access to the extended I/0. Only required if extended
I/O will be used. The CABLE-80 can also be converted for use with OPTO-22 or Grayhill
I/O modules - consult Galil.
4. (1) ICM-2908 and (1) CABLE-36 for access to auxiliary encoders. Only required if auxiliary
encoders are needed.
DMC-2X00 Chapter 2 Getting Started ¢ 11

Motor Amplifiers.

Brush or Brushless Servo motors with Optical Encoders or stepper motors.

5
6. Power Supply for Amplifiers.
7
8

PC (Personal Computer - RS232 or USB for DMC-2000 or Ethernet for DMC-2100)
9a. WSDK-16 or WSDK-32 (recommend for first time users.)

or

9b. DMCWIN16, DMCWIN32 or DMCDOS communication software.

The WSDK software is highly recommended for first time users of the DMC-2x00. It provides step-
by-step instructions for system connection, tuning and analysis.

Installing the DMC-2x00

Installation of a complete, operational DMC-2x00 system consists of 9 steps.

Step 1.
Step 2.
Step 3a.
Step 3b.
Step 3c.
Step 4.
Step 5.
Step 6.
Step 7.
Step 8.
Step 9a.
Step 9b.
Step 9c.
Step 10.

Determine overall motor configuration.

Install Jumpers on the DMC-2x00.

Configure the DIP switches on the DMC-2000.

Configure the DIP switches on the DMC-2100.

Configure the DIP switches on the DMC-2200

Install the communications software.

Connect AC power to controller.

Establish communications with the Galil Communication Software.
Determine the Axes to be used for sinusoidal commutation.
Make connections to amplifier and encoder.

Connect standard servo motors.

Connect sinusoidal commutation motors

Connect step motors.

Tune the servo system

Step 1. Determine Overall Motor Configuration

Before setting up the motion control system, the user must determine the desired motor configuration.
The DMC-2x00 can control any combination of standard servo motors, sinusoidally commutated
brushless motors, and stepper motors. Other types of actuators, such as hydraulics can also be
controlled, please consult Galil.

The following configuration information is necessary to determine the proper motor configuration:

Standard Servo Motor Operation:

The DMC-2x00 has been setup by the factory for standard servo motor operation providing an analog
command signal of +/- 10V. No hardware or software configuration is required for standard servo
motor operation.

12 e Chapter 2 Getting Started

DMC-2X00

Sinusoidal Commutation:

Sinusoidal commutation is configured through a single software command, BA. This configuration
causes the controller to reconfigure the number of available control axes.

Each sinusoidally commutated motor requires two DACs. In standard servo operation, the DMC-2x00
has one DAC per axis. In order to have the additional DAC for sinusoidal commutation, the controller
must be designated as having one additional axis for each sinusoidal commutation axis. For example,
to control two standard servo axes and one axis of sinusoidal commutation, the controller will require a
total of four DACs and the controller must be a DMC-2x40.

Sinusoidal commutation is configured with the command, BA. For example, BAA sets the A axis to
be sinusoidally commutated. The second DAC for the sinusoidal signal will be the highest available
DAC on the controller. For example: Using a DMC-2x40, the command BAA will configure the A
axis to be the main sinusoidal signal and the 'D' axis to be the second sinusoidal signal.

The BA command also reconfigures the controller to indicate that the controller has one less axis of
'standard' control for each axis of sinusoidal commutation. For example, if the command BAA is
given to a DMC-2x40 controller, the controller will be re-configured to a DMC-2x30 controller. By
definition, a DMC-2x30 controls 3 axes: A,B and C. The 'D' axis is no longer available since the
output DAC is being used for sinusoidal commutation.

Further instruction for sinusoidal commutation connections are discussed in Step 6.

Stepper Motor Operation

To configure the DMC-2x00 for stepper motor operation, the controller requires a jumper for each
stepper motor and the command, MT, must be given. The installation of the stepper motor jumper is
discussed in the following section entitled "Installing Jumpers on the DMC-2x00". Further instruction
for stepper motor connections are discussed in Step 9.

Step 2. Install Jumpers on the DMC-2x00

Master Reset and Upgrade Jumpers

JP1 on the main board contains two jumpers, MRST and UPGRD. The MRST jumper is the Master
Reset jumper. When MRST is connected, the controller will perform a master reset upon PC power up
or upon the reset input going low. The MRST can also be set with the DIP switches on the outside of
the controller. Whenever the controller has a master reset, all programs, arrays, variables, and motion
control parameters stored in EEPROM will be ERASED.

The UPGRD jumper enables the user to unconditionally update the controller’s firmware. This jumper
is not necessary for firmware updates when the controller is operating normally, but may be necessary
in cases of corrupted EEPROM. EEPROM corruption should never occur, however, it is possible if
there is a power fault during a firmware update. If EEPROM corruption occurs, your controller may
not operate properly. In this case, install the UPGRD Jumper and use the update firmware function on
the Galil Terminal to re-load the system firmware.

Opto-Isolation Jumpers

The inputs and limit switches are opto-isolated. If you are not using an isolated supply, the internal
+5V supply from the PC may be used to power the opto-isolators. This is done by installing jumpers
on JP3 on main board.

DMC-2X00

Chapter 2 Getting Started ¢ 13

Stepper Motor Jumpers

For each axis that will used for stepper motor operation, the corresponding stepper mode (SM) jumper

E must be connected. The stepper mode jumpers, labeled JP5 and JP7 are located directly beside the
GL-1800 IC's on the main board (see the diagram of the DMC-2x00). The individual jumpers are
labeled SMA thru SMH and configure the controller for ‘Stepper Motors’ for the corresponding axes
A-H when installed. Note that the daughter board must be removed to access these jumpers. Contact
the Galil factory if stepper motor jumpers should be placed on your controller with each order for a
special part number.

(Optional) Motor Off Jumpers

The state of the motor upon power up may be selected with the placement of a hardware jumper on the
controller. With a jumper installed at the MO location, the controller will be powered up in the “motor
off” state. The SH command will need to be issued in order for the motor to be enabled. With no
jumper installed, the controller will immediately enable the motor upon power up. The MO command
will need to be issued to turn the motor off.

The MO jumper is always located on the same block of jumpers as the stepper motor jumpers (SM).
This feature is only available to newer revision controllers. Please consult Galil for adding this
functionality to older revision controllers.

Communications Jumpers for DMC-2000

The Main and Auxiliary Serial Communication Ports are normally connected for RS-232 connection.
The jumpers JP3 and JP4 on the DMC-2001 daughter-board allows the DMC-2000 to be configured
for RS-422. This can be specified as an option when the unit is purchased or the DMC-2000 may be
re-configured by the user, please consult Galil for instructions. Other serial communication protocols,
such as RS-485, can be implemented as a special - consult Galil.

Communications Jumpers for DMC-2100/DMC-2200

The main and Auxiliary Serial Commutations Ports are normally connected for RS-232 connection.
The jumpers JP4 and JP5 on the DMC-21001 daughter board allows the controller to be configured for
RS-422. This can be specified as an option when the unit is purchased or the controller may be re-
configured by the user, please consult Galil for instructions. Other serial communications protocols,
such as RS-485, can be implemented as a special - consult Galil.

Step 3a. Configure DIP switches on the DMC-2000

Located on the outside of the controller box is a set of 5 DIP switches. When the controller is powered
on or reset, the state of the dip switches are read.

Switch 1 - Master Reset

When this switch is on, the controller will perform a master reset upon PC power up. Whenever the
controller has a master reset, all programs and motion control parameters stored in EEPROM will be
ERASED. During normal operation, this switch should be off.

Switch 2 - XON / XOFF
When on, this switch will enable software handshaking (XON/XOFF) through the main serial port.

Switch 3 - Hardware Handshake Mode

When on, this switch will enable hardware handshaking through the main serial port.

14 e Chapter 2 Getting Started DMC-2X00

Switch 4, 5 and 6 - Main Serial Port Baud Rate

The following table describes the baud rate settings:

9600 19.2 3800 BAUD RATE
ON ON OFF 1200
ON OFF OFF 9600
OFF ON OFF 19200
OFF OFF ON 38400
OFF ON ON 115200

Switch 10 - USB

When on, the controller will use the USB port as a default port for messages. When off, the controller
will use the RS-232 port as default. When the firmware is updated, the controller will send the
response (a colon), to the default port setting. If this is not the same port that was used to download
the firmware, the Galil software will not return control to the user. In this case, the software will have
to be re-started.

Step 3b. Configure DIP switches on the DMC-2100

Switch 1 - Master Reset

When this switch is on, the controller will perform a master reset upon PC power up. Whenever the
controller has a master reset, all programs and motion control parameters stored in EEPROM will be
ERASED. During normal operation, this switch should be off.

Switch 2 - XON / XOFF
When on, this switch will enable software handshaking (XON/XOFF) through the main serial port.

Switch 3 - Hardware Handshake Mode

When on, this switch will enable hardware handshaking through the main serial port.

Step 3c. Configure DIP switches on the DMC-2200

Switch 1 - Master Reset

When this switch is on, the controller will perform a master reset upon PC power up. Whenever the
controller has a master reset, all programs and motion control parameters stored in EEPROM will be
ERASED. During normal operation, this switch should be off.

Switch 2 - XON / XOFF
When on, this switch will enable software handshaking (XON/XOFF) through the main serial port.

Switch 3 - Hardware Handshake Mode

When on, this switch will enable hardware handshaking through the main serial port.

DMC-2X00

Chapter 2 Getting Started ¢ 15

Switch 4,5 and 6 - Main Serial Port Baud Rate

The following table describes the baud rate settings:

9600 19.2 3800 BAUD RATE
ON ON OFF 1200
ON OFF OFF 9600
OFF ON OFF 19200
OFF OFF ON 38400
OFF ON ON 115200

Switch 7-Option

When OFF, the controller will use the auto-negotiate function to set the Ethernet connection speed.
When the DIP switch is ON, the controller defaults to 10BaseT.

Switch 8-Ethernet

When ON, the controller will use the Ethernet port as the default port for unsolicited messages. When
OFF, the controller will use the RS-232 port as the default. When the firmware is updated, the
controller will send the response (a colon) to the default port setting. If this is not the same port that
was used to download the firmware, the Galil software will not return control to the user. In this case,
the software will have to be re-started.

Step 4. Install the Communications Software

After applying power to the computer, you should install the Galil software that enables
communication between the controller and PC.

Using Windows 98SE, NT, ME, 2000 or XP:

The Galil Software CD-ROM will automatically begin the installation procedure when the CD-ROM is
installed. To install the basic communications software, run the Galil Software CD-ROM and choose
DMC Smart Term. This will install the Galil Smart Terminal, which can be used for communication.

Step 5. Connect AC Power to the Controller

Before applying power, connect the 100-pin cable between the DMC-2x00 and ICM-2900 interconnect
module. The DMC-2x00 requires a single AC supply voltage, single phase, 50 Hz or 60 Hz. from 90
volts to 260 volts.

WARNING: Dangerous voltages, current, temperatures and energy levels exist in this product and
the associated amplifiers and servo motor(s). Extreme caution should be exercised in the
application of this equipment. Only qualified individuals should attempt to install, set up and
operate this equipment. Never open the controller box when AC power is applied to it.

The green power light indicator should go on when power is applied.

16 e Chapter 2 Getting Started DMC-2X00

Step 6. Establish Communications with Galil Software

Communicating through the Main Serial Communications Port

Connect the DMC-2x00 MAIN serial port to your computer via the Galil CABLE-9PIN-D (RS-232
Cable).

Using Galil Software for DOS (serial communication only)

To communicate with the DMC-2000, type TALK2DMC at the prompt. Once you have established
communication, the terminal display should show a colon, :. If you do not receive a colon, press the
carriage return. If a colon prompt is not returned, there is most likely an incorrect setting of the serial
communications port. The user must ensure that the correct communication port and baud rate are
specified when attempting to communicate with the controller. Please note that the serial port on the
controller must be set for handshake mode for proper communication with Galil software. The user
must also insure that the proper serial cable is being used, see appendix for pin-out of serial cable.

Using Galil Software for Windows

In order for the windows software to communicate with a Galil controller, the controller must be
registered in the Windows Registry. To register a controller, you must specify the model of the
controller, the communication parameters, and other information. The registry is accessed through the
Galil software under the “File” menu in WSDK or under the “Tools” menu in the Galil Smart
Terminal.

The registry window is equipped with buttons to Add a New Controller, change the Properties of an
existing controller, Delete a controller, or Find an Ethernet Controller.

Use the “New Controller” button to add a new entry to the Registry. You will need to supply the
Galil Controller model (eg: DMC-2000). Pressing the down arrow to the right of this field will reveal
a menu of valid controller types. You then need to choose serial or Ethernet connection. Remember, a
DMC-2000 connected via USB is plug and play and should be automatically added to the registry
upon connection. The registry information will show a default Comm Port of 1 and a default Comm
Speed of 19200 appears. This information can be changed as necessary to reflect the computers
Comm Port and the baud rate set by the dip switches on the front of the controller (default is 19200
with HSHK on). The registry entry also displays timeout and delay information. These are advanced
parameters which should only be modified by advanced users (see software documentation for more
information).

Once you have set the appropriate Registry information for your controller, Select OK and close the
registry window. You will now be able to communicate with the controller.

If you are not properly communicating with the controller, the program will pause for 3-15 seconds
and an error message will be displayed. In this case, there is most likely an incorrect setting of the
serial communications port or the serial cable is not connected properly. The user must ensure that the
correct communication port and baud rate are specified when attempting to communicate with the
controller. Please note that the serial port on the controller must be set for handshake mode for proper
communication with Galil software. The user must also insure that a “straight-through” serial cable is
being used (NOT a Null Modem cable), see appendix for pin-out of serial cable.

Once you establish communications, open up the Terminal and hit the “Enter” key. You should
receive a colon prompt. Communicating with the controller is described in later sections.

DMC-2X00

Chapter 2 Getting Started ¢ 17

Using Non-Galil Communication Software

The DMC-2x00 main serial port is configured as DATASET. Your computer or terminal must be
configured as a DATATERM for full duplex, no parity, 8 data bits, one start bit and one stop bit.

Check to insure that the baud rate switches have been set to the desired baud rate as described above.

Your computer needs to be configured as a "dumb" terminal which sends ASCII characters as they are
typed to the DMC-2x00.

Communicating through the Universal Serial Bus (USB)

NOTE: Galil Software only supports the use of the USB port under Windows 98SE, ME, 2000 and
XP.

Connect the USB cable from the computer to the USB IN port on the controller. Since the controller
has been powered on in the previous step, the computer will recognize the first connection to a Galil
USB controller. The computer will identify the USB controller and add it to the Windows Registry as
a plug and play device.

Communicating through the Ethernet

Using Galil Software for Windows

The controller must be registered in the Windows registry for the host computer to communicate with
it. The registry may be accessed via Galil software, such as WSDK or SmartTERM.

From WSDK, the registry is accessed under the FILE menu. From Smart TERM it is accessed under
the TOOLS menu. Use the NEW CONTROLLER button to add a new entry in the registry. Choose
DMC-2100 or DMC-2200 as the controller type. Enter the IP address obtained from your system
administrator. Select the button corresponding to the UDP or TCP protocol in which you wish to
communicate with the controller. If the IP address has not been already assigned to the controller,
click on ASSIGN IP ADDRESS.

18 e Chapter 2 Getting Started DMC-2X00

ASSIGN IP ADDRESS will check the controllers that are linked to the network to see which ones do
not have an IP address. The program will then ask you whether you would like to assign the IP
address you entered to the controller with the specified serial number. Click on YES to assign it, NO
to move to next controller, or CANCEL to not save the changes. If there are no controllers on the
network that do not have an IP address assigned, the program will state this.

When done registering, click on OK. If you do not wish to save the changes, click on CANCEL.

Once the controller has been register, select the correct controller from the list and click on OK. If the
software successfully established communications with the controller, the registry entry will be
displayed at the top of the screen.

NOTE: The controller must be registered via an Ethernet connection.

Sending Test Commands to the Terminal:

After you connect your terminal, press <return> or the <enter> key on your keyboard. In response to
carriage return <return>, the controller responds with a colon, :

Now type
TPA <return>

This command directs the controller to return the current position of the A axis. The controller should
respond with a number such as

0000000

Step 7. Determine the Axes to be Used for Sinusoidal
Commutation

* This step is only required when the controller will be used to control a brushless motor(s) with
sinusoidal commutation.

The command, BA is used to select the axes of sinusoidal commutation. For example, BAAC sets A
and C as axes with sinusoidal commutation.

Notes on Configuring Sinusoidal Commutation:

The command, BA, reconfigures the controller such that it has one less axis of 'standard' control for
each axis of sinusoidal commutation. For example, if the command BAA is given to a DMC-2x40
controller, the controller will be re-configured to be a DMC-2x30 controller. In this case the highest
axis is no longer available except to be used for the 2™ phase of the sinusoidal commutation. Note that
the highest axis on a controller can never be configured for sinusoidal commutation.

The DAC associated with the selected axis represents the first phase. The second phase uses the
highest available DAC. When more than one axis is configured for sinusoidal commutation, the
controller will assign the second phases to the DACs which have been made available through the axes
reconfiguration. The highest sinusoidal commutation axis will be assigned to the highest available
DAC and the lowest sinusoidal commutation axis will be assigned to the lowest available DAC. Note
that the lowest axis is the A axis and the highest axis is the highest available axis for which the
controller has been configured.

Example: Sinusoidal Commutation Configuration using a DMC-2x70
BAAC

This command causes the controller to be reconfigured as a DMC-2x50 controller. The A and C axes
are configured for sinusoidal commutation. The first phase of the A axis will be the motor command
A signal. The second phase of the A axis will be F signal. The first phase of the C axis will be the
motor command C signal. The second phase of the C axis will be the motor command G signal.

DMC-2X00

Chapter 2 Getting Started ¢ 19

Step 8. Make Connections to Amplifier and Encoder.

Once you have established communications between the software and the DMC-2x00, you are ready to
connect the rest of the motion control system. The motion control system typically consists of an
ICM-2900 Interface Module, an amplifier for each axis of motion, and a motor to transform the current
from the amplifier into torque for motion.

If you are using an ICM-2900, connect it to the DMC-2x00 via the 100-pin high density cable. The
ICM-2900 provides screw terminals for access to the connections described in the following
discussion.

Motion Controllers with more than 4 axes require a second ICM-2900 and 100-pin cable.
System connection procedures will depend on system components and motor types. Any combination

of motor types can be used with the DMC-2x00. If sinusoidal commutation is to be used, special
attention must be paid to the reconfiguration of axes.

Here are the first steps for connecting a motion control system:

Step A. Connect the motor to the amplifier with no connection to the controller. Consult the
amplifier documentation for instructions regarding proper connections. Connect and turn-on
the amplifier power supply. If the amplifiers are operating properly, the motor should stand
still even when the amplifiers are powered up.

Step B. Connect the amplifier enable signal.

Before making any connections from the amplifier to the controller, you need to verify that
the ground level of the amplifier is either floating or at the same potential as earth.

potential than
and amplifier.

WARNING: When the amplifier ground is not isolated from the power line or when it has a different

that of the computer ground, serious damage may result to the computer controller

If you are not sure about the potential of the ground levels, connect the two ground signals
(amplifier ground and earth) by a 10 kQ resistor and measure the voltage across the resistor.
Only if the voltage is zero, connect the two ground signals directly.

The amplifier enable signal is used by the controller to disable the motor. This signal is
labeled AMPENA for the A axis on the ICM-2900 and should be connected to the enable
signal on the amplifier. Note that many amplifiers designate this signal as the INHIBIT
signal. Use the command, MO, to disable the motor amplifiers - check to insure that the
motor amplifiers have been disabled (often this is indicated by an LED on the amplifier).

This signal changes under the following conditions: the watchdog timer activates, the motor-
off command, MO, is given, or the OE1 command (Enable Off-On-Error) is given and the
position error exceeds the error limit. AMPEN can be used to disable the amplifier for these
conditions.

The standard configuration of the AMPEN signal is TTL active high. In other words, the
AMPEN signal will be high when the controller expects the amplifier to be enabled. The
polarity and the amplitude can be changed if you are using the ICM-2900 interface board. To
change the polarity from active high (5 volts = enable, zero volts = disable) to active low
(zero volts = enable, 5 volts = disable), replace the 7407 IC with a 7406. Note that many
amplifiers designate the enable input as ‘inhibit’.

To change the voltage level of the AMPEN signal, note the state of the resistor pack on the
ICM-2900. When Pin 1 is on the 5V mark, the output voltage is 0-5V. To change to 12 volts,
pull the resistor pack and rotate it so that Pin 1 is on the 12 volt side. If you remove the
resistor pack, the output signal is an open collector, allowing the user to connect an external
supply with voltages up to 24V.

Step C. Connect the encoders

20 e Chapter 2 Getting Started DMC-2X00

For stepper motor operation, an encoder is optional.

For servo motor operation, if you have a preferred definition of the forward and reverse
directions, make sure that the encoder wiring is consistent with that definition.

The DMC-2x00 accepts single-ended or differential encoder feedback with or without an
index pulse. If you are not using the ICM-2900 you will need to consult the appendix for the
encoder pinouts for connection to the motion controller. The ICM-2900 accepts encoder
feedback via individual signal leads. Simply match the leads from the encoder you are using
to the encoder feedback inputs on the interconnect board. The signal leads are labeled CHA
(channel A), CHB (channel B), and INDEX. For differential encoders, the complement
signals are labeled CHA-, CHB-, and INDEX-.

NOTE: When using pulse and direction encoders, the pulse signal is connected to CHA and the
direction signal is connected to CHB. The controller must be configured for pulse and direction
with the command CE. See the command summary for further information on the command CE.

Step D. Verify proper encoder operation.

Start with the A encoder first. Once it is connected, turn the motor shaft and interrogate the
position with the instruction TPA <return>. The controller response will vary as the motor is
turned.

At this point, if TPA does not vary with encoder rotation, there are three possibilities:
1. The encoder connections are incorrect - check the wiring as necessary.

2. The encoder has failed - using an oscilloscope, observe the encoder signals. Verify
that both channels A and B have a peak magnitude between 5 and 12 volts. Note
that if only one encoder channel fails, the position reporting varies by one count
only. If the encoder failed, replace the encoder. If you cannot observe the encoder
signals, try a different encoder.

3. There is a hardware failure in the controller - connect the same encoder to a different
axis. If the problem disappears, you probably have a hardware failure. Consult the
factory for help.

Step E. Connect Hall Sensors if available.

Hall sensors are only used with sinusoidal commutation and are not necessary for proper
operation. The use of Hall sensors allows the controller to automatically estimate the
commutation phase upon reset and also provides the controller the ability to set a more precise
commutation phase. Without Hall sensors, the commutation phase must be determined
manually.

The Hall effect sensors are connected to the digital inputs of the controller. These inputs can
be used with the general use inputs (bits 1-8), the auxiliary encoder inputs (bits 81-96), or the
extended /O inputs of the DMC-2x00 controller (bits 17-80).

NOTE: The general use inputs are optoisolated and require a voltage connection at the INCOM
point - for more information regarding the digital inputs, see Chapter 3, Connecting Hardware.

Each set of sensors must use inputs that are in consecutive order. The input lines are specified
with the command, BI. For example, if the Hall sensors of the C axis are connected to inputs
6, 7 and 8, use the instruction:

BI, 6 or
BIC=6

DMC-2X00

Chapter 2 Getting Started e 21

Step 9a. Connect Standard Servo Motors

The following discussion applies to connecting the DMC-2x00 controller to standard servo motor
amplifiers:

The motor and the amplifier may be configured in the torque or the velocity mode. In the torque
mode, the amplifier gain should be such that a 10 volt signal generates the maximum required current.
In the velocity mode, a command signal of 10 volts should run the motor at the maximum required
speed.

Step by step directions on servo system setup are also included on the WSDK (Windows Servo Design
Kit) software offered by Galil. See section on WSDK for more details.

Step A. Check the Polarity of the Feedback Loop

1t is assumed that the motor and amplifier are connected together and that the encoder is
operating correctly (Step B). Before connecting the motor amplifiers to the controller, read
the following discussion on setting Error Limits and Torque Limits. Note that this discussion
only uses the A axis as an examples.

Step B. Set the Error Limit as a Safety Precaution

Usually, there is uncertainty about the correct polarity of the feedback. The wrong polarity
causes the motor to run away from the starting position. Using a terminal program, such as
DMCTERM, the following parameters can be given to avoid system damage:

Input the commands:
ER 2000 <CR> Sets error limit on the A axis to be 2000 encoder counts
OE 1 <CR> Disables A axis amplifier when excess position error exists

If the motor runs away and creates a position error of 2000 counts, the motor amplifier will be
disabled.

NOTE: This function requires the AMPEN signal to be connected from the controller to the
amplifier.

Step C. Set Torque Limit as a Safety Precaution

To limit the maximum voltage signal to your amplifier, the DMC-2x00 controller has a torque
limit command, TL. This command sets the maximum voltage output of the controller and
can be used to avoid excessive torque or speed when initially setting up a servo system.

When operating an amplifier in torque mode, the voltage output of the controller will be
directly related to the torque output of the motor. The user is responsible for determining this
relationship using the documentation of the motor and amplifier. The torque limit can be set
to a value that will limit the motors output torque.

When operating an amplifier in velocity or voltage mode, the voltage output of the controller
will be directly related to the velocity of the motor. The user is responsible for determining
this relationship using the documentation of the motor and amplifier. The torque limit can be
set to a value that will limit the speed of the motor.

For example, the following command will limit the output of the controller to 1 volt on the X
axis:

TL 1 <CR>

NOTE: Once the correct polarity of the feedback loop has been determined, the torque limit
should, in general, be increased to the default value of 9.99. The servo will not operate properly if
the torque limit is below the normal operating range. See description of TL in the command
reference.

22 o Chapter 2 Getting Started DMC-2X00

Step D. Connect the Motor

Once the parameters have been set, connect the analog motor command signal (ACMD) to the
amplifier input.

To test the polarity of the feedback, command a move with the instruction:
PR 1000 <CR> Position relative 1000 counts
BGA <CR> Begin motion on A axis

When the polarity of the feedback is wrong, the motor will attempt to run away. The
controller should disable the motor when the position error exceeds 2000 counts. If the motor
runs away, the polarity of the loop must be inverted.

Inverting the Loop Polarity

When the polarity of the feedback is incorrect, the user must invert the loop polarity and this may be
accomplished by several methods. If you are driving a brush-type DC motor, the simplest way is to
invert the two motor wires (typically red and black). For example, switch the M1 and M2 connections
going from your amplifier to the motor. When driving a brushless motor, the polarity reversal may be
done with the encoder. If you are using a single-ended encoder, interchange the signal CHA and CHB.
If, on the other hand, you are using a differential encoder, interchange only CHA+ and CHA-. The
loop polarity and encoder polarity can also be affected through software with the MT, and CE
commands. For more details on the MT command or the CE command, see the Command Reference
section.

Sometimes the feedback polarity is correct (the motor does not attempt to run away) but the direction
of motion is reversed with respect to the commanded motion. If this is the case, reverse the motor
leads AND the encoder signals.

If the motor moves in the required direction but stops short of the target, it is most likely due to
insufficient torque output from the motor command signal ACMD. This can be alleviated by reducing
system friction on the motors. The instruction:

TTA <return> Tell torque on A
reports the level of the output signal. It will show a non-zero value that is below the friction level.

Once you have established that you have closed the loop with the correct polarity, you can move on to
the compensation phase (servo system tuning) to adjust the PID filter parameters, KP, KD and KI. It is
necessary to accurately tune your servo system to ensure fidelity of position and minimize motion
oscillation as described in the next section.

DMC-2X00

Chapter 2 Getting Started e 23

ICM-2900
mocwmoz | [1{] 00 [mocmow
sionz | [][] 00 |sienw | O
Pwmz | 1] Uy [pwmw SignalGnd 2 = w9
GND | {11 ULl [eND +Ref In 4 @ c @
| | > T T
mocmpx | 11 MM |mocmpy - - T o
SIGNX : : : : SIGNY — | z < 5
Pwmx | || [1 PWMY L] o =
aND | 1] MM eno
—— — o] Motor + 1
outpwr | [1[] 00 [ameenw 51 Motor - 2
erroR | [][] 00 |amPenz [O] + '
ove | [I[] 00 |avpeny [O] Power Gnd 4
ourono | MM A |ampEnX O] HighVolt 5
ouTs
ouTe j j j j ouT2
our7 | 1] 00 [outs
outs | 1] 00 [outs
+sv | [00 [Lscom
vomez | [1[] 00 [Homew
rusz |][] 00 |resw
sz | 00| 100 [Fesw |_|
Homex | [[] 00 [Homey
resx | [][] 00 |resy o
Fusx | L1 UL |Fusy o)
ano | (1] | U feno o
s |] 00 |xcatcH @
IN6 ; ; ; : YLATCH g
IN7 ZLATCH
we | [0 00 [weatcH §
— = =
+5V INCOM o
UL UL =
+12v | [1] [|asorT :'—/
azv | []] 00 |reser b +
anacno | [[] 00 [eno
anaLoas | []] [0 [anaLoct Encoder
anaLocs | []] 00 [anaLocz
anaLoer | [[[] 00 [anaLoss
anacocs | [[] 00 [anaLoca ’
+5V MM |zmax
x| 1] N Lamax
o] AT A Lo
] oo | HF UL e
+sv [][] 00 |+may
winy | [00 [-may
ANY ; ; ; ; +MBY
eno | [UL [-vevy
+sv | 1] 00 [+maz
wnz | [I] 00 |maz
anz | 1[0 00 [+mez
ano |][] 00 |mez
+sv | 11 N |+maw
anw |] [0 |-maw
anw [][] 00 |+mew
ano | I 00 [-mew

Figure 2-6 System Connections with a separate amplifier (MSA 12-80). This diagram shows the connections for a

standard DC Servo Motor and encoder

24 o Chapter 2 Getting Started

DMC-2X00

Step 9b. Connect Sinusoidal Commutation Motors

When using sinusoidal commutation, the parameters for the commutation must be determined and
saved in the controller’s non-volatile memory. The setup for sinusoidal commutation is
different when using Hall Sensors. Each step which is affected by Hall Sensor Operation is
divided into two parts, part 1 and part 2. After connecting sinusoidal commutation motors,
the servos must be tuned as described in Step 10.

Step A. Disable the motor amplifier

Use the command, MO, to disable the motor amplifiers. For example, MOA will turn the A
axis motor off.

Step B. Connect the motor amplifier to the controller.

The sinusoidal commutation amplifier requires 2 signals, usually denoted as Phase A & Phase
B. These inputs should be connected to the two sinusoidal signals generated by the controller.
The first signal is the axis specified with the command, BA (Step 6). The second signal is
associated with the highest analog command signal available on the controller - note that this
axis was made unavailable for standard servo operation by the command BA.

When more than one axis is configured for sinusoidal commutation, the controller will assign
the second phase to the command output which has been made available through the axes
reconfiguration. The 2" phase of the highest sinusoidal commutation axis will be the highest
command output and the 2™ phase of the lowest sinusoidal commutation axis will be the
lowest command output.

It is not necessary to be concerned with cross-wiring the 1 and 2™ signals. If this wiring is
incorrect, the setup procedure will alert the user (Step D).

Example: Sinusoidal Commutation Configuration using a DMC-
2x70

BAAC

This command causes the controller to be reconfigured as a DMC-2x50 controller. The A and
C axes are configured for sinusoidal commutation. The first phase of the A axis will be the
motor command A signal. The second phase of the A axis will be the motor command F
signal. The first phase of the C axis will be the motor command C signal. The second phase
of the C axis will be the motor command G signal.

Step C. Specify the Size of the Magnetic Cycle.

Use the command, BM, to specify the size of the brushless motors magnetic cycle in encoder
counts. For example, if the X axis is a linear motor where the magnetic cycle length is 62
mm, and the encoder resolution is 1 micron, the cycle equals 62,000 counts. This can be
commanded with the command.

BM 62000

On the other hand, if the C axis is a rotary motor with 4000 counts per revolution and 3
magnetic cycles per revolution (three pole pairs) the command is

BM,, 1333.333
Step D - part 1 (Systems with or without Hall Sensors). Test the Polarity of the DACs

Use the brushless motor setup command, BS, to test the polarity of the output DACs. This
command applies a certain voltage, V, to each phase for some time T, and checks to see if the
motion is in the correct direction.

DMC-2X00 Chapter 2 Getting Started e 25

The user must specify the value for V and T. For example, the command
BSA =2,700

will test the A axis with a voltage of 2 volts, applying it for 700 millisecond for each phase.
In response, this test indicates whether the DAC wiring is correct and will indicate an
approximate value of BM. If the wiring is correct, the approximate value for BM will agree
with the value used in the previous step.

NOTE: In order to properly conduct the brushless setup, the motor must be allowed to move a
minimum of one magnetic cycle in both directions.

NOTE: When using Galil Windows software, the timeout must be set to a minimum of 10
seconds (time-out = 10000) when executing the BS command. This allows the software to
retrieve all messages returned from the controller.

Step D - part 2 (Systems with Hall Sensors Only). Test the Hall Sensor Configuration.

Since the Hall sensors are connected randomly, it is very likely that they are wired in the
incorrect order. The brushless setup command indicates the correct wiring of the Hall
sensors. The Hall sensor wires should be re-configured to reflect the results of this test.

The setup command also reports the position offset of the Hall transition point and the zero
phase of the motor commutation. The zero transition of the Hall sensors typically occur at
0°, 30° or 90° of the phase commutation. It is necessary to inform the controller about the
offset of the Hall sensor and this is done with the instruction, BB.

Step E. Save Brushless Motor Configuration

It is very important to save the brushless motor configuration in non-volatile memory. After
the motor wiring and setup parameters have been properly configured, the burn command,
BN, should be given.

NOTE: Without Hall sensors, the controller will not be able to estimate the commutation phase
of the brushless motor. In this case, the controller could become unstable until the commutation
phase has been set using the BZ command (see next step). It is highly recommended that the
motor off command be given before executing the BN command. In this case, the motor will be
disabled upon power up or reset and the commutation phase can be set before enabling the motor.

Step F - part 1 (Systems with or without Hall Sensors). Set Zero Commutation Phase

When an axis has been defined as sinusoidally commutated, the controller must have an
estimate for commutation phase. When Hall sensors are used, the controller automatically
estimates this value upon reset of the controller. If no Hall sensors are used, the controller
will not be able to make this estimate and the commutation phase must be set before enabling
the motor.

To initialize the commutation without Hall effect sensor use the command, BZ. This function
drives the motor to a position where the commutation phase is zero, and sets the phase to zero.

The BZ command is followed by real numbers in the fields corresponding to the driven axes.
The number represents the voltage to be applied to the amplifier during the initialization.
When the voltage is specified by a positive number, the initialization process end up in the
motor off (MO) state. A negative number causes the process to end in the Servo Here (SH)
state.

26 e Chapter 2 Getting Started DMC-2X00

WARNING: This command must move the motor to find the zero commutation phase. This
movement is instantaneous and will cause the system to jerk. Larger applied voltages will cause
more severe motor jerk. The applied voltage will typically be sufficient for proper operation of the
BZ command. For systems with significant friction, this voltage may need to be increased and for
systems with very small motors, this value should be decreased. For example:

BZ-2,0,1

ill drive both A and C axes to zero, will apply 2V and 1V respectively to A and C and will end up
|xith A in SH and C in MO.

Step F - part 2 (Systems with Hall Sensors Only). Set Zero Commutation Phase

With Hall sensors, the estimated value of the commutation phase is good to within 30°. This
estimate can be used to drive the motor but a more accurate estimate is needed for efficient
motor operation. There are 3 possible methods for commutation phase initialization:

Method 1. Use the BZ command as described above.

Method 2. Drive the motor close to commutation phase of zero and then use BZ command.
This method decreases the amount of system jerk by moving the motor close to zero
commutation phase before executing the BZ command. The controller makes an estimate for
the number of encoder counts between the current position and the position of zero
commutation phase. This value is stored in the operand BZn. Using this operand the
controller can be commanded to move the motor. The BZ command is then issued as
described above. For example, to initialize the A axis motor upon power or reset, the
following commands may be given:

SHA ;Enable A axis motor

PRA=-1*(_BZA) ;Move A motor close to zero commutation phase

BGA ;Begin motion on A axis

AMA ; Wait for motion to complete on A axis

BZA=-1 ;Drive motor to commutation phase zero and leave
;motor on

Method 3. Use the command, BC. This command uses the Hall transitions to determine the
commutation phase. Ideally, the Hall sensor transitions will be separated by exactly 60° and
any deviation from 60° will affect the accuracy of this method. If the Hall sensors are
accurate, this method is recommended. The BC command monitors the Hall sensors during a
move and monitors the Hall sensors for a transition point. When that occurs, the controller
computes the commutation phase and sets it. For example, to initialize the A axis motor upon
power or reset, the following commands may be given:

SHA ;Enable A axis motor

BCA ;Enable the brushless calibration command
PRA=50000 ;Command a relative position movement on A axis
BGA ;Begin motion on A axis. When the Hall sensors

; detect a phase transition, the commutation phase is
;re-set.

DMC-2X00

Chapter 2 Getting Started e 27

Step 9c. Connect Step Motors

In Stepper Motor operation, the pulse output signal has a 50% duty cycle. Step motors operate open
loop and do not require encoder feedback. When a stepper is used, the auxiliary encoder for the
corresponding axis is unavailable for an external connection. If an encoder is used for position
feedback, connect the encoder to the main encoder input corresponding to that axis. The commanded
position of the stepper can be interrogated with RP or TD. The encoder position can be interrogated
with TP.

The frequency of the step motor pulses can be smoothed with the filter parameter, KS. The KS
parameter has a range between 0.5 and 8, where 8 implies the largest amount of smoothing. See
Command Reference regarding KS.

The DMC-2x00 profiler commands the step motor amplifier. All DMC-2x00 motion commands apply
such as PR, PA, VP, CR and JG. The acceleration, deceleration, slew speed and smoothing are also
used. Since step motors run open-loop, the PID filter does not function and the position error is not
generated.

To connect step motors with the DMC-2x00 you must follow this procedure:
Step A. Install SM jumpers

Each axis of the DMC-2x00 that will operate a stepper motor must have the corresponding
stepper motor jumper installed. For a discussion of SM jumpers, see section Step 2. Install
Jumpers on the DMC-2x00.

Step B. Connect step and direction signals from controller to motor amplifier

From the controller to respective signals on your step motor amplifier. (These signals are
labeled PULSX and DIRX for the A-axis on the ICM-2900). Consult the documentation for
your step motor amplifier.

Step C. Configure DMC-2x00 for motor type using MT command. You can configure the DMC-
2x00 for active high or active low pulses. Use the command MT 2 for active low step motor
pulses and MT -2 for active high step motor pulses. See description of the MT command in
the Command Reference.

Step 10. Tune the Servo System

Adjusting the tuning parameters required when using servo motors (standard or sinusoidal
commutation). The system compensation provides fast and accurate response and the following
presentation suggests a simple and easy way for compensation. More advanced design methods are
available with software design tools from Galil, such as the Servo Design Kit (SDK software)

The filter has three parameters: the damping, KD; the proportional gain, KP; and the integrator, KI.
The parameters should be selected in this order.

To start, set the integrator to zero with the instruction
KIO <return> Integrator gain

and set the proportional gain to a low value, such as
KP 1 <return> Proportional gain

KD 100 <return> Derivative gain

28 e Chapter 2 Getting Started DMC-2X00

For more damping, you can increase KD (maximum is 4095). Increase gradually and stop after the
motor vibrates. A vibration is noticed by audible sound or by interrogation. If you send the command

TE A <return> Tell error

a few times, and get varying responses, especially with reversing polarity, it indicates system vibration.
When this happens, simply reduce KD.

Next you need to increase the value of KP gradually (maximum allowed is 1023). You can monitor the
improvement in the response with the Tell Error instruction

KP 10 <return> Proportion gain
TE A <return> Tell error
As the proportional gain is increased, the error decreases.

Again, the system may vibrate if the gain is too high. In this case, reduce KP. Typically, KP should
not be greater than KD/4 (only when the amplifier is configured in the current mode).

Finally, to select KI, start with zero value and increase it gradually. The integrator eliminates the
position error, resulting in improved accuracy. Therefore, the response to the instruction

TE A <return>

becomes zero. As Kl is increased, its effect is amplified and it may lead to vibrations. If this occurs,
simply reduce KI. Repeat tuning for the B, C and D axes.

For a more detailed description of the operation of the PID filter and/or servo system theory, see
Chapter 10 - Theory of Operation.

Design Examples

Here are a few examples for tuning and using your controller. These examples have remarks next to
each command - these remarks must not be included in the actual program.

System Set-up

This example assigns the system filter parameters, error limits and enables the automatic error shut-off.

Instruction Interpretation

KP10,10,10,10 Set gains for a,b,c,d (or A,B,C,D axes)
KP*=10 Alternate method for setting gain on all axes
KPA=10 Method for setting only A axis gain

KP, 20 Set B axis gain only

Instruction Interpretation

OE 1,1,1,1,1,1,1,1 Enable automatic Off on Error function for all axes
ER*=1000 Set error limit for all axes to 1000 counts
KP10,10,10,10,10,10,10,10 Set gains for a,b,c,d,e,f,g,and h axes
KP*=10 Alternate method for setting gain on all axes
KPA=10 Alternate method for setting A axis gain
KP,,10 Set C axis gain only

KPD=10 Alternate method for setting D axis gain
KPH=10 Alternate method for setting H axis gain

DMC-2X00

Chapter 2 Getting Started e 29

Profiled Move

Rotate the A axis a distance of 10,000 counts at a slew speed of 20,000 counts/sec and an acceleration
and deceleration rates of 100,000 counts/s2. In this example, the motor turns and stops:

Instruction Interpretation

PR1000 Distance

SP20000 Speed

DC 100000 Deceleration

AC 100000 Acceleration

BG A Start Motion
Multiple Axes
Objective: Move the four axes independently.

Instruction Interpretation

PR 500,1000,600,-400 Distances of A,B,C,D

SP 10000,12000,20000,10000 Slew speeds of A,B,C,D
AC 10000,10000,10000,10000 Accelerations of A,B,C,D
DC 80000,40000,30000,50000 Decelerations of A,B,C,D
BG AC Start A and C motion

BG BD Start B and D motion

Independent Moves

The motion parameters may be specified independently as illustrated below.

Instruction Interpretation
PR ,300,-600 Distances of B and C
SP ,2000 Slew speed of B

DC ,80000 Deceleration of B
AC ,100000 Acceleration of B
AC ,,100000 Acceleration of C
DC,,150000 Deceleration of C
BGC Start C motion
BGB Start B motion

Position Interrogation

The position of the four axes may be interrogated with the instruction, TP.

Instruction Interpretation

TP Tell position all four axes
TP A Tell position — A axis only
TP B Tell position — B axis only
TPC Tell position — C axis only
TP D Tell position — D axis only

30 e Chapter 2 Getting Started DMC-2X00

The position error, which is the difference between the commanded position and the actual position
can be interrogated with the instruction TE.

Instruction Interpretation

TE Tell error — all axes

TE A Tell error — A axis only
TEB Tell error — B axis only
TEC Tell error — C axis only
TED Tell error — D axis only

Absolute Position

Objective: Command motion by specifying the absolute position.

Instruction Interpretation

DP 0,2000 Define the current positions of A,B as 0 and 2000
PA 7000,4000 Sets the desired absolute positions

BG A Start A motion

BGB Start B motion

After both motions are complete, the A and B axes can be command back to zero:

PA 0,0 Move to 0,0
BG AB Start both motions
Velocity Control
Objective: Drive the A and B motors at specified speeds.
Instruction Interpretation
JG 10000,-20000 Set Jog Speeds and Directions
AC 100000, 40000 Set accelerations
DC 50000,50000 Set decelerations
BG AB Start motion

after a few seconds, command:

JG -40000 New A speed and Direction

TV A Returns A speed
and then

JG ,20000 New B speed

TVB Returns B speed
These cause velocity changes including direction reversal. The motion can be stopped with the
instruction

ST Stop

DMC-2X00 Chapter 2 Getting Started ¢ 31

Operation Under Torque Limit

The magnitude of the motor command may be limited independently by the instruction TL.

Instruction Interpretation

TL 0.2 Set output limit of A axis to 0.2 volts
JG 10000 Set A speed

BG A Start A motion

In this example, the A motor will probably not move since the output signal will not be sufficient to
overcome the friction. If the motion starts, it can be stopped easily by a touch of a finger.

Increase the torque level gradually by instructions such as

Instruction Interpretation
TL 1.0 Increase torque limit to 1 volt.
TL 9.998 Increase torque limit to maximum, 9.998 volts.

The maximum level of 9.998 volts provides the full output torque.

Interrogation

The values of the parameters may be interrogated. Some examples ...
Instruction Interpretation
KP? Return gain of A axis
KP ,,? Return gain of C axis.
KP ?2,2,2,? Return gains of all axes.

Many other parameters such as KI, KD, FA, can also be interrogated. The command reference denotes
all commands which can be interrogated.

Operation in the Buffer Mode

The instructions may be buffered before execution as shown below.

Instruction Interpretation

PR 600000 Distance

SP 10000 Speed

WT 10000 Wait 10000 milliseconds before reading the next instruction
BG A Start the motion

Using the On-Board Editor

Motion programs may be edited and stored in the controller’s on-board memory. When the command,
ED is given from the Galil DOS terminal (such as DMCTERM), the controllers editor will be started.

The instruction
ED Edit mode

moves the operation to the editor mode where the program may be written and edited. The editor
provides the line number. For example, in response to the first ED command, the first line is zero.

32 e Chapter 2 Getting Started DMC-2X00

Line# Instruction Interpretation

000 #A Define label
001 PR 700 Distance

002 SP 2000 Speed

003 BGA Start A motion
004 EN End program

To exit the editor mode, input <cntr[>Q. The program may be executed with the command.
XQ #A Start the program running

If the ED command is issued from the Galil Windows terminal software (such as SmartTERM), the
software will open a Windows based editor. From this editor a program can be entered, edited,
downloaded and uploaded to the controller.

Motion Programs with Loops

Motion programs may include conditional jumps as shown below.

Instruction Interpretation

#A Label

DP 0 Define current position as zero
V1=1000 Set initial value of V1
#LOOP Label for loop

PA V1 Move A motor V1 counts
BG A Start A motion

AM A After A motion is complete
WT 500 Wait 500 ms

TP A Tell position A
V1=V1+1000 Increase the value of V1

JP #LOOP,V1<10001 Repeat if V1<10001

EN End

After the above program is entered, quit the Editor Mode, <cntrl>Q. To start the motion, command:
XQ #A Execute Program #A

Motion Programs with Trippoints

The motion programs may include trippoints as shown below.

Instruction Interpretation

#B Label

DP 0,0 Define initial positions

PR 30000,60000 Set targets

SP 5000,5000 Set speeds

BGA Start A motion

AD 4000 Wait until A moved 4000
BGB Start B motion

AP 6000 Wait until position A=6000
SP 2000,50000 Change speeds

DMC-2X00 Chapter 2 Getting Started ¢ 33

AP ,50000 Wait until position B=50000
SP,10000 Change speed of B
EN End program

To start the program, command:
XQ #B Execute Program #B

Control Variables

Objective: To show how control variables may be utilized.

Instruction Interpretation

#A;DP0O Label; Define current position as zero
PR 4000 Initial position

SP 2000 Set speed

BGA Move A

AMA Wait until move is complete

WT 500 Wait 500 ms

#B

V1=_TPA Determine distance to zero

PR -V1/2 Command A move 1/2 the distance
BGA Start A motion

AMA After A moved

WT 500 Wait 500 ms

Vi= Report the value of V1

JP #C, V1=0 Exit if position=0

JP #B Repeat otherwise

#C Label #C

EN End of Program

To start the program, command
XQ #A Execute Program #A

This program moves A to an initial position of 1000 and returns it to zero on increments of half the
distance. Note, TPA is an internal variable which returns the value of the A position. Internal
variables may be created by preceding a DMC-2x00 instruction with an underscore, .

Linear Interpolation

Objective: Move A,B,C motors distance of 7000,3000,6000, respectively, along linear trajectory.
Namely, motors start and stop together.

34 e Chapter 2 Getting Started DMC-2X00

Instruction Interpretation

LM ABC Specify linear interpolation axes

LI 7000,3000,6000 Relative distances for linear interpolation
LE Linear End

VS 6000 Vector speed

VA 20000 Vector acceleration

VD 20000 Vector deceleration

BGS Start motion

Circular Interpolation

Objective: Move the AB axes in circular mode to form the path shown on Fig. 2-7. Note that the
vector motion starts at a local position (0,0) which is defined at the beginning of any vector motion
sequence. See application programming for further information.

Instruction Interpretation
VM AB Select AB axes for circular interpolation
VP -4000,0 Linear segment
CR 2000,270,-180 Circular segment
VP 0,4000 Linear segment
CR 2000,90,-180 Circular segment
VS 1000 Vector speed
VA 50000 Vector acceleration
VD 50000 Vector deceleration
VE End vector sequence
BGS Start motion
B

(-4000,4000) (0,4000)

R=2000

(-4000,0) (0,0) local zero

A
Figure 2-7 Motion Path for Circular Interpolation Example
DMC-2X00 Chapter 2 Getting Started ¢ 35

Chapter 3 Connecting Hardware

Overview

The DMC-2x00 provides opto-isolated digital inputs for forward limit, reverse limit, home, and
abort signals. The controller also has 8 opto-isolated, uncommitted inputs (for general use) as well
as 8 TTL outputs and 8 analog inputs configured for voltages between +/- 10 volts.

Controllers with 5 or more axes have an additional 8 opto-isolated inputs and an additional 8 TTL
outputs.

This chapter describes the inputs and outputs and their proper connection.

If you plan to use the auxiliary encoder feature of the DMC-2x00, you will require a separate encoder
cable and breakout - contact Galil Motion control

Using Optoisolated Inputs

Limit Switch Input

The forward limit switch (FLSx) inhibits motion in the forward direction immediately upon activation
of the switch. The reverse limit switch (RLSx) inhibits motion in the reverse direction immediately
upon activation of the switch. If a limit switch is activated during motion, the controller will make a
decelerated stop using the deceleration rate previously set with the DC command. The motor will
remain “ON” (in a servo state) after the limit switch has been activated and will hold motor position.

When a forward or reverse limit switch is activated, the current application program that is running
will be interrupted and the controller will automatically jump to the #LIMSWI subroutine if one exists.
This is a subroutine which the user can include in any motion control program and is useful for
executing specific instructions upon activation of a limit switch. Automatic Subroutines are discussed
in Chapter 6.

After a limit switch has been activated, further motion in the direction of the limit switch will not be
possible until the logic state of the switch returns back to an inactive state. This usually involves
physically opening the tripped switch. Any attempt at further motion before the logic state has been
reset will result in the following error: “022 - Begin not possible due to limit switch” error.

The operands, LFx and LRx, contain the state of the forward and reverse limit switches, respectively
(x represents the axis, A,B,C,D etc.). The value of the operand is either a ‘0’ or ‘1’ corresponding to
the logic state of the limit switch. Using a terminal program, the state of a limit switch can be printed
to the screen with the command, MG _LFx or MG _LFx. This prints the value of the limit switch
operands for the 'x' axis. The logic state of the limit switches can also be interrogated with the TS
command. For more details on TS see the Command Reference.

36 e Chapter 3 Connecting Hardware DMC-2X00

Home Switch Input

Homing inputs are designed to provide mechanical reference points for a motion control application.
A transition in the state of a Home input alerts the controller that a particular reference point has been
reached by a moving part in the motion control system. A reference point can be a point in space or an
encoder index pulse.

The Home input detects any transition in the state of the switch and toggles between logic states 0 and
1 at every transition. A transition in the logic state of the Home input will cause the controller to
execute a homing routine specified by the user.

There are three homing routines supported by the DMC-2x00: Find Edge (FE), Find Index (FI), and
Standard Home (HM).

The Find Edge routine is initiated by the command sequence: FEA <return>, BGA <return>. The Find
Edge routine will cause the motor to accelerate, then slew at constant speed until a transition is
detected in the logic state of the Home input. The direction of the FE motion is dependent on the state
of the home switch. The motor will then decelerate to a stop. The acceleration rate, deceleration rate
and slew speed are specified by the user, prior to the movement, using the commands AC, DC, and SP.
1t is recommended that a high deceleration value be used so the motor will decelerate rapidly after
sensing the Home switch.

The Find Index routine is initiated by the command sequence: FIA <return>, BGA <return>. Find
Index will cause the motor to accelerate to the user-defined slew speed at a rate specified by the user
with the AC command and slew until the controller senses a change in the index pulse signal from low
to high. The slew speed and direction in which the motor will move is designated by the JG command.
The motor then decelerates to a stop at the rate previously specified by the user with the DC command.
Although Find Index is an option for homing, it is not dependent upon a transition in the logic state of
the Home input, but instead is dependent upon a transition in the level of the index pulse signal.

The Standard Homing routine is initiated by the sequence of commands HMA <return>, BGA
<return>. Standard Homing is a combination of Find Edge and Find Index homing. Initiating the
standard homing routine will cause the motor to slew until a transition is detected in the logic state of
the Home input. The motor will accelerate at the rate specified by the command, AC, up to the slew
speed. After detecting the transition in the logic state on the Home Input, the motor will decelerate to
a stop at the rate specified by the command, DC. After the motor has decelerated to a stop, it switches
direction and approaches the transition point at the speed of 256 counts/sec. When the logic state
changes again, the motor moves forward (in the direction of increasing encoder count) at the same
speed, until the controller senses the index pulse. After detection, it decelerates to a stop and defines
this position as 0. The logic state of the Home input can be interrogated with the command MG
_HMA. This command returns a 0 or 1 if the logic state is low or high, respectively. The state of the
Home input can also be interrogated indirectly with the TS command.

For examples and further information about Homing, see command HM, FI, FE of the Command
Reference and the section entitled ‘Homing’ in the Programming Motion Section of this manual.

Abort Input

The function of the Abort input is to immediately stop the controller upon transition of the logic state.

NOTE: The response of the abort input is significantly different from the response of an activated
limit switch. When the abort input is activated, the controller stops generating motion commands
immediately, whereas the limit switch response causes the controller to make a decelerated stop.

NOTE: The effect of an Abort input is dependent on the state of the Off-On-Error function for each
axis. If the Off-On-Error function is enabled for any given axis, the motor for that axis will be turned
off when the abort signal is generated. This could cause the motor to ‘coast’ to a stop since it is no

DMC-2X00

Chapter 3 Connecting Hardware e 37

longer under servo control. If the Off-On-Error function is disabled, the motor will decelerate to a stop
as fast as mechanically possible and the motor will remain in a servo state.

All motion programs that are currently running are terminated when a transition in the Abort input is
detected. For information on setting the Off-On-Error function, see the Command Reference, OE.

Reset Input

When this input is pulled low (to 0 volts), the controller will reset. This is equivalent to pushing the
reset button on the front of the DMC-2x00.

Uncommitted Digital Inputs

The DMC-2x00 has 8 opto-isolated inputs. These inputs can be read individually using the function @
IN[x] where x specifies the input number (1 thru 8). These inputs are uncommitted and can allow the
user to create conditional statements related to events external to the controller. For example, the user
may wish to have the x-axis motor move 1000 counts in the positive direction when the logic state of
IN1goes high.

Controllers with more than 4 axes have 16 optoisolated inputs which are denoted as Inputs 1 thru 16.

Wiring the Opto-Isolated Inputs

The Opto-isolation inputs have a bi-directional capability. To activate an input, at least ImA of current
must flow from the input common through the input (see figure 3.1). This can be accomplished by 2
methods:

Method 1: Connect a positive voltage in the range of +5V to +24V (with respect to the input) at the
input common point. Each input is connected to ground to activate the input.

Method 2: Connect ground to the input common point. Each input is activated by connecting a
positive voltage between +5V and +24 volts.

The Opto-lsolation Common Point

The opto-isolated inputs are configured into 2 groups. The general inputs, IN[1]-IN[8], and the
ABORT input are in one group. The signal, INCOM, is a common connection for all inputs in this
group. The limit switches and home switches are in the second group. The signal, LSCOM, is a
common connection for all inputs in this group. Figure 3.1 illustrates the internal circuitry.

Group (Controllers with 1-4 Group (Controllers with 5 -9 Common
Axes) Axes) Signal
IN[1]-IN[8], ABORT IN[1]-IN[16], ABORT INCOM
FLA,RLA,HOMEA FLA,RLA,HOMEA,FLB,RLB,HOMEB LSCOM
FLB,RLB,HOMEB FLC,RLC,HOMEC,FLD,RLD,HOMED
FLC,RLC,HOMEC FLE,RLE,HOMEE,FLF,RLF,HOMEF
FLD,RLD,HOMED FLG,RLG,HOMEG,FLH,RLH,HOMEH

38 e Chapter 3 Connecting Hardware DMC-2X00

LSCOM o,

Additional Limit
Switches(Dependent on
Number of Axes)

FLSA RLSA HOMEA FLSB RLSB HOMEB

INCO

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8
(ALATCH) (BLATCH) (CLATCH) (DLATCH)

Figure 3-1. The Optoisolated Inputs.

NOTE: Controllers with 5 or axes have IN[9] through IN[16] also connected to INCOM.

Using an Isolated Power Supply

To take full advantage of opto-isolation, an isolated power supply should be connected to the input
common. When using an isolated power supply, do not connect the ground of the isolated power to the
ground of the controller. A power supply in the voltage range between 5 to 24 volts may be applied
directly (see Figure 3-2). For voltages greater than 24 volts, a resistor, R, is needed in series with the
input such that

1 mA <V supply/(R + 2.2KQ) < 11 mA

DMC-2X00 Chapter 3 Connecting Hardware e 39

External Resistor Needed for External Resistor Needed for

Voltages > +24V LSCOM Voltages > +24V LSCOM
2.2K 2.2K
N
— ~ ! >
! +
% W
FLSA i FLSA
Configuration to source current at Configuration to sink current at
LSCOM terminal and sink LSCOM terminal and source
switch switch

Figure 3-2. Connecting a single Limit or Home Switch to an Isolated Supply. This diagram only shows the
connection for the forward limit switch of the X axis.

NOTE: As stated in Chapter 2, the wiring is simplified when using a Galil Interconnect module, such
as the ICM-1900 or ICM-2900. These boards accept the cables of the DMC-2x00 and provide
terminals for easy access (Refer to figure 2-2).

Bypassing the Opto-Isolation:

If no isolation is needed, the internal 5 volt supply may be used to power the switches. This can be
done by connecting a jumper between the pins LSCOM or INCOM and 5V, labeled JP3 on the main
board. The Galil interconnect modules provide jumpers and the DMC-2x00 also provides a jumper for
making this connection.

Analog Inputs

The DMC-2x00 has eight analog inputs configured for the range between -10V and 10V. The inputs
are decoded by a 12-bit A/D decoder giving a voltage resolution of approximately .005V. A 16-bit
ADC is available as an option. The impedance of these inputs is 10 KQ. The analog inputs are
specified as AN[x] where x is a number 1 thru 8.

Amplifier Interface

The DMC-2x00 command voltage ranges between +/-10V. This signal, along with GND, provides the
input to the motor amplifiers. The amplifiers must be sized to drive the motors and load. For best
performance, the amplifiers should be configured for a torque (current) mode of operation with no
additional compensation. The gain should be set such that a 10 volt input results in the maximum
required current.

The DMC-2x00 also provides an amplifier enable signal, AMPEN. This signal changes under the
following conditions: the motor-off command, MO, is given, the watchdog timer activates, or the OE1

40 « Chapter 3 Connecting Hardware DMC-2X00

command (Enable Off-On-Error) is given and the position error exceeds the error limit. As shown in
Figure 3-4, AMPEN can be used to disable the amplifier for these conditions.

The standard configuration of the AMPEN signal is TTL active high. In other words, the AMPEN
signal will be high when the controller expects the amplifier to be enabled. The polarity and the
amplitude can be changed if you are using the ICM-2900 interface board. To change the polarity from
active high (5 volts= enable, zero volts = disable) to active low (zero volts = enable, 5 volts= disable),
replace the 7407 IC with a 7406. Note that many amplifiers designate the enable input as ‘inhibit’.

To change the voltage level of the AMPEN signal, note the state of the resistor pack on the ICM-2900.
When Pin 1 is on the 5V mark, the output voltage is 0-5V. To change to 12 volts, pull the resistor pack
and rotate it so that Pin 1 is on the 12 volt side. If you remove the resistor pack, the output signal is an
open collector, allowing the user to connect an external supply with voltages up to 24V.

DMC-2x00 ICM-2900
: ---------------------- . Connection to +5V or +12V made resistor
+12V O O +5V . pack RP1. Removing the resistor allows
. T : the user to connect their own resistor the
. ' desired voltage level (Up to 24V) by
removing ICM-2900 cover
U AMPENX SERVO MOTOR
: : AMPLIFIER
: i E GND
100-PIN I :
HIGH
DENSITY
CABLE V...
MOCMDX
7407 Open Collector Buffer.)
The Enable can be inverted Analog Switch
by using a 7406. Accessed

by removing ICM-2900
cover.

Figure 3-3 Connecting AMPEN to the motor amplifier

TTL Inputs

The Auxiliary Encoder Inputs

The auxiliary encoder inputs can be used for general use. For each axis, the controller has one
auxiliary encoder and each auxiliary encoder consists of two inputs, channel A and channel B. The
auxiliary encoder inputs are mapped to the inputs 81-96.

DMC-2X00

Chapter 3 Connecting Hardware ¢ 41

Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels
between +/- 12 volts. The inputs have been configured to accept TTL level signals. To connect TTL
signals, simply connect the signal to the + input and leave the - input disconnected. For other signal
levels, the - input should be connected to a voltage that is }2 of the full voltage range (for example,
connect the - input to 6 volts if the signal is a 0 - 12 volt logic).

Example:

A DMC-2x10 has one auxiliary encoder. This encoder has two inputs (channel A and channel B).
Channel A input is mapped to input 81 and Channel B input is mapped to input 82. To use this input
for 2 TTL signals, the first signal will be connected to AA+ and the second to AB+. AA- and AB-
will be left unconnected. To access this input, use the function @IN[81] and @IN[82].

NOTE: The auxiliary encoder inputs are not available for any axis that is configured for
stepper motor.

TTL Outputs

The DMC-2x00 provides dedicated and general use outputs.

General Use Outputs

The DMC-2x00 provides eight general use outputs, an output compare and an error signal output. The
general use outputs are TTL and are accessible through the ICM-2900 as OUT1 thru OUTS. These
outputs can be turned On and Off with the commands, SB (Set Bit), CB (Clear Bit), OB (Output Bit),
and OP (Output Port). For more information about these commands, see the Command Summary.
The value of the outputs can be checked with the operand _OP and the function @OUT][] (see Chapter
7, Mathematical Functions and Expressions).

Controllers with 5 or more axes have an additional eight general use TTL outputs.

NOTE: The ICM-2900 has an option to provide opto-isolation on the outputs. In this case, the user
provides an isolated power supply (+5volts to +24volts and ground). For more information, consult
Galil.

Output Compare

The output compare signal is TTL and is available on the ICM-2900 as CMP. Output compare is
controlled by the position of any of the main encoders on the controller. The output can be
programmed to produce an active low pulse (lusec) based on an incremental encoder value or to
activate once when an axis position has been passed. For further information, see the command OC in
the Command Reference.

42 o Chapter 3 Connecting Hardware DMC-2X00

Error Output

The controller provides a TTL signal, ERROR, to indicate a controller error condition. When an error
condition occurs, the ERROR signal will go low and the controller LED will go on. An error occurs
because of one of the following conditions:

1. At least one axis has a position error greater than the error limit. The error limit is set by
using the command ER.

2. The reset line on the controller is held low or is being affected by noise.
3. There is a failure on the controller and the processor is resetting itself.

4. There is a failure with the output IC which drives the error signal.

Extended 1/0 of the DMC-2x00 Controller

The DMC-2x00 controller offers 64 extended TTL I/O points which can be configured as inputs or
outputs in 8 bit increments. Configuration is accomplished with command CO - see Chapter 7. The
I/O points are accessed through the 80 pin high density connector labeled EXTENDED 1/0.

Interfacing to Grayhill or OPTO-22 G4PB24:

The DMC-2x00 controller uses one 80 Pin high density connector to access the extended I/O. This
connector is accessed via the Galil CABLE-80. The Galil CABLE-80 can be converted to (2) 50 pin
ribbon cables which are compatible with I/O mounting racks such as Grayhill 70GRCM32-HL and
OPTO-22 G4PB24. To convert the 80 pin cable, use the CB-50-80 adapter from Galil. The 50 pin
ribbon cables which connect to the CB-50-80 connect directly into the I/O mounting racks. The CB-
50-80 adapter board is described in the appendix.

When using the OPTO-22 G4PB24 1/0 mounting rack, the user will only have access to 48 of the 64
/O points available on the controller. Block 5 and Block 9 must be configured as inputs and will be
grounded by the 1/O rack.

DMC-2X00

Chapter 3 Connecting Hardware ¢ 43

Chapter 4 Communication

Introduction

The DMC-2x00 has two RS232 ports, and either one USB input port and 2 USB output ports, or
Ethernet ports. The main RS-232 port is the data set and can be configured through the switches on the
front panel. The auxiliary RS-232 port is the data term and can be configured with the software
command CC. The auxiliary RS-232 port can be configured either for daisy chain operation (DMC-
2000 only) or as a general port. This configuration can be saved using the Burn (BN) instruction. The
RS232 ports also have a clock synchronizing line that allows synchronization of motion on more than
one controller.

RS232 Ports

The RS232 pin-out description for the main and auxiliary port is given below. Note that the auxiliary
port is essentially the same as the main port except inputs and outputs are reversed. The DMC-2x00
may also be configured by the factory for RS422. These pin-outs are also listed below.

NOTE: If you are connecting the RS232 auxiliary port to a terminal or any device which is a
DATASET, it is necessary to use a connector adapter, which changes a dataset to a dataterm. This
cable is also known as a 'null' modem cable.

RS232 - Main Port {P1} DATATERM

1 CTS - output 6 CTS - output

2 Transmit Data - output 7 RTS - input

3 Receive Data - input 8 CTS - output

4 RTS - input 9 No connect (Can connect to +5V or sample clock)
5 Ground

RS232 - Auxiliary Port {P2} DATASET

1 CTS —input 6 CTS - input

2 Transmit Data - input 7 RTS - output

3 Receive Data - output 8 CTS - input

4 RTS - output 9 5V (Can be connected to sample clock with jumpers)
5 Ground

44 « Chapter 4 Communication DMC-2X00

*RS422 - Main Port {P1}

1 CTS - output 6 CTS+ output

2 Transmit Data - output 7 Transmit+ output
3 Receive Data - input 8 Receivet input
4 RTS - input 9 RTS+ input

5 Ground

*RS422 - Auxiliary Port {P2}

1 CTS - input 6 CTS+ input

2 Receive Data - input 7 Receive+ input

3 Transmit Data - output 8 Transmit+ output
4 RTS - output 9 RTS+ output

5 Ground

*Default configuration is RS232. RS422 configuration available from factory.

RS-232 Configuration

Configure your PC for 8-bit data, one start-bit, one stop-bit, full duplex and no parity. The baud rate
for the RS232 communication can be selected by setting the proper switch configuration on the front
panel according to the table below.

Baud Rate Selection
SWITCH SETTINGS
9600 19.2 3800 BAUD RATE
ON ON OFF 1200
ON OFF OFF 9600
OFF ON OFF 19200
OFF OFF ON 38400
OFF ON ON 115200
Handshaking Modes

The RS232 main port can be configured for hardware and software handshaking. For Hardware
Handshaking, set the HSHK switch to ON. In this mode, the RTS and CTS lines are used. The CTS
line will go high whenever the DMC-2x00 is not ready to receive additional characters. The RTS line
will inhibit the DMC-2x00 from sending additional characters. Note, the RTS line goes high for
inhibit. The handshake should be turned on to ensure proper communication especially at higher baud
rates.

Software handshaking can be enabled by setting the XON switch to ON. In this mode, the controller
will generate / accept XON and XOFF characters to control the flow of characters to / from the
terminal. The controller uses the hex value $13 for the XOFF character and the hex value $11 for the
XON character.

The auxiliary port of the DMC-2x00 can be configured either as a general port or for the daisy-chain
(DMC-2000 only). When configured as a general port, the port can be commanded to send ASCII
messages to another DMC-2x00 controller or to a display terminal or panel.

DMC-2X00

Chapter 4 Communication e 45

(Configure Communication) at port 2. The command is in the format of:
CC m,n,r,p

where m sets the baud rate, n sets for either handshake or non-handshake mode, r sets for general port
or the auxiliary port, and p turns echo on or off.

m - Baud Rate - 300,1200,4800,9600,19200,38400

n - Handshake - 0=No; 1=Yes

r - Mode - 0=General Port; 1=Daisy-chain

p - Echo - 0=Off; 1=On; Valid only if =0
Note, for the handshake of the auxiliary port, the roles for the RTS and CTS lines are reversed.
Example:

CC 1200,0,0,1 Configure auxiliary communication port for 1200 baud, no handshake, general
port mode and echo turned on.

Daisy-Chaining (DMC-2000 only)

Up to eight DMC-2000 controllers may be connected in a daisy-chain allowing for multiple controllers
to be commanded from a single serial port. One DMC-2000 is connected to the host terminal via the
RS232 at port 1 or the main port. Port 2 or the auxiliary port of that DMC-2000 is then brought into
port 1 of the next DMC-2000, and so on. The address of each DMC-2000 is configured by setting the
three address dipswitches (A0, A1, A2) located on the front of the controller.

When connecting multiple controllers in a daisy-chain, the cable between controllers should be female
on both ends with all wires connected straight through.

ADRI represents the 2°bit, ADR2 represents 2' bit, and ADR4 represents 2> bit of the address. The
eight possible addresses, 0 through 7, are set as follows:

A2 A1 A0 ADDRESS
OFF OFF OFF 0
OFF OFF ON 1
OFF ON OFF 2
OFF ON ON 3
ON OFF OFF 4
ON OFF ON 5
ON ON OFF 6
ON ON ON 7

To communicate with any one of the DMC-2000 units, give the command “%A”, where A is the
address of the board. All instructions following this command will be sent only to the board with that
address. Only when a new %A command is given will the instruction be sent to another board. The
only exception is "!" command. To talk to all the DMC-2000 boards in the daisy-chain at one time,
insert the character "!" before the software command. All boards receive the command, but only
address 0 will echo.

NOTE: The CC command must be specified to configure the port P2 of each unit.

46 ¢ Chapter 4 Communication DMC-2X00

Example- Daisy Chain

Objective: Control a 7-axis motion system using two controllers, a DMC-2040 4 axis controller and a
DMC-2030 3 axis controller. Address 0 is the DMC-2040 and address 1 is the DMC-2030.

Desired motion profile:

Address 0 (DMC-2040) A Axis is 500 counts
B Axis is 1000 counts
C Axis is 2000 counts
D Axis is 1500 counts
Address 1 (DMC-2030) A Axis is 700 counts
B Axis is 1500 counts
C Axis is 2500 counts
Command Interpretation
%0 Talk only to controller 0 (DMC-2040)
PR 500,1000,2000,1500 Specify A,B,C,D distances
%1 Talk only to controller board 1 (DMC-2030)
PR 700,1500,2500 Specify A,B,C distances
'BG Begin motion on both controllers

Synchronizing Sample Clocks in Daisy Chain

It is possible to synchronize the sample clocks of all DMC-2000's in the daisy-chain. The first
controller (connected to the computer) should have a jumper placed on the jumper JP3 to connect the
pins labeled S and 8. Note that this connection requires a jumper to be placed sideways. The
subsequent controllers should have jumpers placed on the jumper JP3, JP4 to connect the pins labeled
S and 8 on both jumpers. Note that these connections require the jumpers to be placed sideways.

Ethernet Configuration (DMC-2100/2200 only)

Communication Protocols

The Ethernet is a local area network through which information is transferred in units known as
packets. Communication protocols are necessary to dictate how these packets are sent and received.
The DMC-2100 supports two industry standard protocols, TCP/IP and UDP/IP. The controller will
automatically respond in the format in which it is contacted.

TCP/IP is a "connection" protocol. The master must be connected to the slave in order to begin
communicating. Each packet sent is acknowledged when received. If no acknowledgement is
received, the information is assumed lost and is resent.

Unlike TCP/IP, UDP/IP does not require a "connection". This protocol is similar to communicating
via RS232. If information is lost, the controller does not return a colon or question mark. Because the
protocol does not provide for lost information, the sender must re-send the packet.

DMC-2X00

Chapter 4 Communication e 47

Although UDP/IP is more efficient and simple, Galil recommends using the TCP/IP protocol. TCP/IP
insures that if a packet is lost or destroyed while in transit, it will be resent.

Ethernet communication transfers information in ‘packets’. The packets must be limited to 470 data
bytes or less. Larger packets could cause the controller to lose communication.

NOTE: In order not to lose information in transit, Galil recommends that the user wait for an
acknowledgement of receipt of a packet before sending the next packet.

Addressing

There are three levels of addresses that define Ethernet devices. The first is the Ethernet or hardware
address. This is a unique and permanent 6 byte number. No other device will have the same Ethernet
address. The DMC-2100/2200 Ethernet address is set by the factory and the last two bytes of the
address are the serial number of the controller.

The second level of addressing is the IP address. This is a 32-bit (or 4 byte) number. The IP address is
constrained by each local network and must be assigned locally. Assigning an IP address to the
controller can be done in a number of ways.

The first method is to use the BOOT-P utility via the Ethernet connection (the DMC-2100/2200 must
be connected to network and powered). For a brief explanation of BOOT-P, see the section: Third
Party Software. Either a BOOT-P server on the internal network or the Galil terminal software may be
used. To use the Galil BOOT-P utility, select the registry in the terminal emulator. Select the DMC-
2100/2200 and then the Ethernet Parameters tab. Enter the IP address at the prompt and select either
TCP/IP or UDP/IP as the protocol. When done, click on the ASSIGN IP ADDRESS. The Galil
Terminal Software will respond with a list of all controllers on the network that do not currently have
IP addresses. The user selects the controller and the software will assign the controller the specified IP
address. Then enter the terminal and type in BN to save the IP address to the controller's non-volatile
memory.

CAUTION: Be sure that there is only one BOOT-P server running. If your network has DHCP or
BOOT-P running, it may automatically assign an IP address to the controller upon linking it to the
network. In order to ensure that the IP address is correct, please contact your system administrator
before connecting the controller to the Ethernet network.

48 ¢ Chapter 4 Communication DMC-2X00

X

Ethernet Parameters

IP &ddress; |124.51.29.31

Azzign IF Address |

[Do Mot Open Multi-cast Handle

Etheret Protocol Inzolicited Meszages
= TEF ¢ ge curent 'CF' Setting
" UDF

Feceive Through Second Handle
['CF' iz sent ta redirect meszages)

Feceive Through S ame Handle
['CF' iz sent ta redirect meszages)

¢ Back | Finizh | Cancel

The second method for setting an IP address is to send the IA command through the DMC-2100/2200
main RS-232 port. The IP address you want to assign may be entered as a 4 byte number delimited by
commas (industry standard uses periods) or a signed 32 bit number (Ex. 1A 124,51,29,31 or [A
2083724575). Type in BN to save the IP address to the controller's non-volatile memory.

NOTE: Galil strongly recommends that the IP address selected is not one that can be accessed across
the Gateway. The Gateway is an application that controls communication between an internal network
and the outside world.

The third level of Ethernet addressing is the UDP or TCP port number. The Galil controller does not
require a specific port number. The port number is established by the client or master each time it
connects to the controller.

Communicating with Multiple Devices

The DMC-2100/2200 is capable of supporting multiple masters and slaves. The masters may be
multiple PC's that send commands to the controller. The slaves are typically peripheral I/O devices
that receive commands from the controller.

NOTE: The term "Master" is equivalent to the internet "client". The term "Slave" is equivalent to the
internet "server".

An Ethernet handle is a communication resource within a device. The DMC-2100/2200 can have a
maximum of 6 Ethernet handles open at any time. When using TCP/IP, each master or slave uses an
individual Ethernet handle. In UDP/IP, one handle may be used for all the masters, but each slave uses

DMC-2X00

Chapter 4 Communication ¢ 49

one. (Pings and ARPs do not occupy handles.) If all 6 handles are in use and a 7™ master tries to
connect, it will be sent a "reset packet" that generates the appropriate error in its windows application.

NOTE: There are a number of ways to reset the controller. Hardware reset (push reset button or
power down controller) and software resets (through Ethernet or RS232 by entering RS). The only
reset that will not cause the controller to disconnect is a software reset via the Ethernet.

When the Galil controller acts as the master, the IH command is used to assign handles and connect to
its slaves. The IP address may be entered as a 4 byte number separated with commas (industry
standard uses periods) or as a signed 32 bit number. A port number may also be specified, but if it is
not, it will default to 1000. The protocol (TCP/IP or UDP/IP) to use must also be designated at this
time. Otherwise, the controller will not connect to the slave. (Ex. IHB=151,25,255,9<179>2 This
will open handle #2 and connect to the IP address 151.25.255.9, port 179, using TCP/IP)

An additional protocol layer is available for speaking to I/O devices. Modbus is an RS-485 protocol
that packages information in binary packets that are sent as part of a TCP/IP packet. In this protocol,
each slave has a 1 byte slave address. The DMC-2100/2200 can use a specific slave address or default
to the handle number. The port number for Modbus is 502.

The Modbus protocol has a set of commands called function codes. The DMC-2100/2200 supports the
10 major function codes:

Function Code Defipiton

01 Read Coil Status (Read Bits)
02 Read Input Status (Read Bits)
03 Read Holding Registers (Read Words)
04 Read Input Registers (Read Words)
05 Force Single Coil (Write One Bit)
06 Preset Single Register (Write One Word)
07 Read Exception Status (Read Error Code)
15 Force Multiple Coils (Write Multiple Bits)
16 Preset Multiple Registers (Write Words)
17 Report Slave ID

The DMC-2100/2200 provides three levels of Modbus communication. The first level allows the user
to create a raw packet and receive raw data. It uses the MBh command with a function code of —1.
The format of the command is

MBh = -1,len,array[] where len is the number of bytes
array[] is the array with the data

The second level incorporates the Modbus structure. This is necessary for sending configuration and
special commands to an I/O device. The formats vary depending on the function code that is called.
For more information refer to the Command Reference.

The third level of Modbus communication uses standard Galil commands. Once the slave has been
configured, the commands that may be used are @IN[], @AN[], SB, CB, OB, and AO. For example,
A0 2020,8.2 would tell I/O number 2020 to output 8.2 volts.

If a specific slave address is not necessary, the I/O number to be used can be calculated with the
following:

50 ¢ Chapter 4 Communication DMC-2X00

I/O Number = (HandleNum*1000) + ((Module-1)*4) + (BitNum-1)

Where HandleNum is the handle number from 1 (A) to 6 (F). Module is the position of the module in
the rack from 1 to 16. BitNum is the I/O point in the module from 1 to 4.

If an explicit slave address is to be used, the equation becomes:
I/0 Number = (SlaveAddress*10000) + (HandleNum*1000) +((Module-1)*4) + (Bitnum-1)
To view an example procedure for communicating with an OPTO-22 rack, refer to the appendix.

Which devices receive what information from the controller depends on a number of things. Ifa
device queries the controller, it will receive the response unless it explicitly tells the controller to send
it to another device. If the command that generates a response is part of a downloaded program, the
response will route to whichever port is specified as the default (unless explicitly told to go to another
port) with the ENET switch ("ON" designates Ethernet in which case it goes to the last handle to
communicate with the controller, "OFF" designates main RS232). To designate a specific destination
for the information, add {Eh} to the end of the command. (Ex. MG{EC}"Hello" will send the
message "Hello" to handle #3. TP,,?{EF} will send the z axis position to handle #6.)

Multicasting

A multicast may only be used in UDP/IP and is similar to a broadcast (where everyone on the network
gets the information) but specific to a group. In other words, all devices within a specified group will
receive the information that is sent in a multicast. There can be many multicast groups on a network
and are differentiated by their multicast [P address. To communicate with all the devices in a specific
multicast group, the information can be sent to the multicast IP address rather than to each individual
device IP address. All Galil controllers belong to a default multicast address of 239.255.19.56. The
controller's multicast IP address can be changed by using the IA> u command.

Using Third Party Software

Galil supports ARP, BOOT-P, and Ping which are utilities for establishing Ethernet connections. ARP
is an application that determines the Ethernet (hardware) address of a device at a specific IP address.
BOOT-P is an application that determines which devices on the network do not have an IP address and
assigns the IP address you have chosen to it. Ping is used to check the communication between the
device at a specific IP address and the host computer.

The DMC-2100 can communicate with a host computer through any application that can send TCP/IP
or UDP/IP packets. A good example of this is Telnet, a utility that comes with most Windows
systems.

Data Record

The DMC-2x00 can provide a block of status information with the use of a single command, QR. This
command, along with the QZ command can be very useful for accessing complete controller status.
The QR command will return 4 bytes of header information and specific blocks of information as
specified by the command arguments:

QR ABCDEFGHST

DMC-2X00

Chapter 4 Communication e 51

Each argument corresponds to a block of information according to the Data Record Map below. If no
argument is given, the entire data record map will be returned. Note that the data record size will
depend on the number of axes.

Data Record Map

DATA TYPE ITEM BLOCK
UB 1* byte of header Header
UB 2" byte of header Header
UB 3" byte of header Header
UB 4" byte of header Header
Uw sample number I block
UB general input 0 I block
UB general input 1 I block
UB general input 2 I block
UB general input 3 I block
UB general input 4 I block
UB general input 5 I block
UB general input 6 I block
UB general input 7 I block
UB general input 8 I block
UB general input 9 I block
UB general output 0 I block
UB general output 1 I block
UB general output 2 I block
UB general output 3 I block
UB general output 4 I block
UB general output 5 I block
UB general output 6 I block
UB general output 7 I block
UB general output 8 I block
UB general output 9 I block
UB error code I block
UB general status I block
Uw segment count of coordinated move for S plane S block
Uw coordinated move status for S plane S block
SL distance traveled in coordinated move for S plane S block
Uuw segment count of coordinated move for T plane T block
Uw coordinated move status for T plane T block
SL distance traveled in coordinated move for T plane T block
Uw a axis status A block
UB a axis switches A block
UB a axis stop code A block
SL a axis reference position A block
SL a axis motor position A block
SL a axis position error A block

52 e Chapter 4 Communication DMC-2X00

SL
SL
SW
SW
Uw
UB
UB
SL
SL
SL
SL
SL
SW
SW
uUw
UB
UB
SL
SL
SL
SL
SL
SW
SW
Uw
UB
UB
SL
SL
SL
SL
SL
SW
SW
Uuw
UB
UB
SL
SL
SL
SL
SL
SW
SW
uw

a axis auxiliary position
a axis velocity

a axis torque

a axis analog

b axis status

b axis switches

b axis stop code

b axis reference position
b axis motor position

b axis position error

b axis auxiliary position
b axis velocity

b axis torque

b axis analog

c axis status

¢ axis switches

¢ axis stop code

¢ axis reference position
¢ axis motor position

¢ axis position error

c axis auxiliary position
¢ axis velocity

¢ axis torque

c axis analog

d axis status

d axis switches

d axis stop code

d axis reference position
d axis motor position

d axis position error

d axis auxiliary position
d axis velocity

d axis torque

d axis analog

e axis status

e axis switches

e axis stop code

e axis reference position
e axis motor position

¢ axis position error

e axis auxiliary position
e axis velocity

e axis torque

e axis analog

f axis status

A block
A block
A block
A block
B block
B block
B block
B block
B block
B block
B block
B block
B block
B block
C block
C block
C block
C block
C block
C block
C block
C block
C block
C block
D block
D block
D block
D block
D block
D block
D block
D block
D block
D block
E block
E block
E block
E block
E block
E block
E block
E block
E block
E block
F block

DMC-2X00

Chapter 4 Communication e 53

UB f axis switches

UB f axis stop code

SL f axis reference position
SL f axis motor position
SL f axis position error

SL f axis auxiliary position
SL f axis velocity

SW f axis torque

SW f axis analog

Uw g axis status

UB g axis switches

UB g axis stop code

SL g axis reference position
SL g axis motor position
SL g axis position error

SL g axis auxiliary position
SL g axis velocity

SW g axis torque

SW g axis analog

Uw h axis status

UB h axis switches

UB h axis stop code

SL h axis reference position
SL h axis motor position
SL h axis position error

SL h axis auxiliary position
SL h axis velocity

SW h axis torque

SW h axis analog

F block
F block
F block
F block
F block
F block
F block
F block
F block
G block
G block
G block
G block
G block
G block
G block
G block
G block
G block
H block
H block
H block
H block
H block
H block
H block
H block
H block
H block

NOTE: UB = Unsigned Byte, UW = Unsigned Word, SW = Signed Word, SL = Signed Long Word

Explanation of Status Information and Axis Switch

Information
Header Information - Byte 0, 1 of Header:

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8
1 N/A N/A N/A N/A I Block T Block S Block

Present Present Present

in Data in Data in Data

Record Record Record

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO
HBlock GBlock F Block E Block DBlock CBlock BBlock A Block

Present Present Present Present Present Present Present Present

in Data in Data in Data in Data in Data in Data in Data in Data

Record Record Record Record Record Record Record Record

54 e Chapter 4 Communication DMC-2X00

Bytes 2, 3 of Header:

Bytes 2 and 3 make a word which represents the Number of bytes in the data record, including the
header.

Byte 2 is the low byte and byte 3 is the high byte

NOTE: The header information of the data records is formatted in little endian.

General Status Information (1 Byte)

BIT 7 BIT BIT BIT BIT BIT 2 BIT 1 BITO
6 5 4 3
Program N/A N/A N/A N/A Waiting for Trace On Echo On
Running input from IN
command

Axis Switch Information (1 Byte)

BIT7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO

Latch State of N/A N/A State of State of Stateof = SM
Occurred Latch Forward Reverse = Home Jumper
Input Limit Limit Input Installed

Axis Status Information (2 Byte)

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8

Movein Mode of Mode of (FE) Home Ist Phase 2™ Phase Mode of
Progress Motion ~ Motion Find (HM)in of HM of Hl\;[Motion
; complete
PA or PA only Efferérsls Progress complete or FI Coord.
PR g command Motion
issued

BIT7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO

Negative Mode of Motion Motionis ~ Motionis Latchis Off-On- Motor

Direction Motion is stopping ~ making armed Error Off
Move slewing ~ dueto ST final occurred
Contour or Limit decel.
Switch

DMC-2X00 Chapter 4 Communication e 55

Coordinated Motion Status Information for S or T plane (2 Byte)

BIT 15 BIT BIT 13 BIT 12 BIT 11 BIT BIT 9 BIT 8
14 10
Movein N/A N/A N/A N/A N/A N/A N/A
Progress
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT O
N/A N/A Motion is Motion is Motionis N/A N/A N/A
slewing stopping due making
to ST or final
Limit decel.
Switch

Notes Regarding Velocity and Torque Information

The velocity information that is returned in the data record is 64 times larger than the value returned
when using the command TV (Tell Velocity). See command reference for more information about
TV.

The Torque information is represented as a number in the range of +/-32767. Maximum negative
torque is -32767. Maximum positive torque is 32767. Zero torque is 0.

QZ Command

The QZ command can be very useful when using the QR command, since it provides information
about the controller and the data record. The QZ command returns the following 4 bytes of
information.

BYTE # | INFORMATION

Number of axes present

number of bytes in general block of data record

0
1
2 number of bytes in coordinate plane block of data record
3

Number of Bytes in each axis block of data record

Controller Response to Commands

Most DMC-2x00 instructions are represented by two characters followed by the appropriate
parameters. Each instruction must be terminated by a carriage return or semicolon.

Instructions are sent in ASCII, and the DMC-2x00 decodes each ASCII character (one byte) one at a
time. It takes approximately 0.5 msec for the controller to decode each command. However, the PC
can send data to the controller at a much faster rate because of the FIFO buffer.

After the instruction is decoded, the DMC-2x00 returns a response to the port from which the
command was generated. If the instruction was valid, the controller returns a colon (:) or a question
mark (?) if the instruction was not valid. For example, the controller will respond to commands which
are sent via the USB port back through the USB port, to commands which are sent via the main RS-

56 e Chapter 4 Communication DMC-2X00

232 port back through the RS-232 port, and to commands which are sent via the Ethernet port back
through the Ethernet port.

For instructions that return data, such as Tell Position (TP), the DMC-2x00 will return the data
followed by a carriage return, line feed and : .

It is good practice to check for : after each command is sent to prevent errors. An echo function is
provided to enable associating the DMC-2x00 response with the data sent. The echo is enabled by
sending the command EO 1 to the controller.

Unsolicited Messages Generated by Controller

When the controller is executing a program, it may generate responses which will be sent via the USB
port (DMC-2000), main RS-232 port, or Ethernet ports (DMC-2100/2200). This response could be
generated as a result of messages using the MG or IN command OR as a result of a command error.
These responses are known as unsolicited messages since they are not generated as the direct response
to a command.

Messages can be directed to a specific port using the specific Port arguments - see MG and IN
commands described in the Command Reference. If the port is not explicitly given, unsolicited
messages will be sent to the default port. The default port is determined by the state of the
USB/Ethernet dip switch when the system is reset.

The controller has a special command, CW, which can affect the format of unsolicited messages. This
command is used by Galil Software to differentiate response from the command line and unsolicited
messages. The command, CW1 causes the controller to set the high bit of ASCII characters to 1 of all
unsolicited characters. This may cause characters to appear garbled to some terminals. This function
can be disabled by issuing the command, CW2. For more information, see the CW command in the
Command Reference.

When handshaking is used (hardware and/or software handshaking) characters which are generated by
the controller are placed in a FIFO buffer before they are sent out of the controller. This size of the
USB buffer is 64 bytes and the size of the RS-232 buffer is 128 bytes. When this buffer becomes full,
the controller must either stop executing commands or ignore additional characters generated for
output. The command CW,1 causes the controller to ignore all output from the controller while the
FIFO is full. The command, CW ,0 causes the controller to stop executing new commands until more
room is made available in the FIFO. This command can be very useful when hardware handshaking is
being used and the communication line between controller and terminal will be disconnected. In this
case, characters will continue to build up in the controller until the FIFO is full. For more information,
see the CW command in the Command Reference.

Galil Software Tools and Libraries

API (Application Programming Interface) software is available from Galil. The API software is
written in C and is included in the Galil CD-ROM. They can be used for development under
Windows environments. With the API's, the user can incorporate already existing library functions
directly into a C program.

Galil has also developed a Visual Basic Toolkit. This provides 32-bit OCXs for handling all of the
DMC-2x00 communications including support of interrupts. These objects install directly into Visual
Basic and are part of the run-time environment.

Galil also has an Active-X Tool Kit to allow developers to rapidly develop their own user applications.
For more information, contact Galil.

DMC-2X00

Chapter 4 Communication e 57

THIS PAGE LEFT BLANK INTENTIALLY

58 e Chapter 4 Communication DMC-2X00

Chapter 5 Command Basics

Introduction

The DMC-2x00 provides over 100 commands for specifying motion and machine parameters.
Commands are included to initiate action, interrogate status and configure the digital filter. These
commands can be sent in ASCII or binary.

In ASCII, the DMC-2x00 instruction set is BASIC-like and easy to use. Instructions consist of two
uppercase letters that correspond phonetically with the appropriate function. For example, the
instruction BG begins motion, and ST stops the motion. In binary, commands are represented by a
binary code ranging from 80 to FF.

ASCII commands can be sent "live" over the bus for immediate execution by the DMC-2x00, or an
entire group of commands can be downloaded into the DMC-2x00 memory for execution at a later
time. Combining commands into groups for later execution is referred to as Applications
Programming and is discussed in the following chapter. Binary commands cannot be used in
Applications programming.

This section describes the DMC-2x00 instruction set and syntax. A summary of commands as well as
a complete listing of all DMC-2x00 instructions is included in the Command Reference chapter.

Command Syntax - ASCII

DMC-2x00 instructions are represented by two ASCII upper case characters followed by applicable
arguments. A space may be inserted between the instruction and arguments. A semicolon or <return>
is used to terminate the instruction for processing by the DMC-2x00 command interpreter.

NOTE: If you are using a Galil terminal program, commands will not be processed until an <return>
command is given. This allows the user to separate many commands on a single line and not begin
execution until the user gives the <return> command.

IMPORTANT: All DMC-2x00 commands are sent in upper case.

For example, the command
PR 4000 <return> Position relative

PR is the two character instruction for position relative. 4000 is the argument which represents the
required position value in counts. The <return> terminates the instruction. The space between PR and
4000 is optional.

For specifying data for the A,B,C and D axes, commas are used to separate the axes. If no data is
specified for an axis, a comma is still needed as shown in the examples below. If no data is specified
for an axis, the previous value is maintained.

DMC-2X00 Chapter 5 Command Basics ¢ 59

To view the current values for each command, type the command followed by a ? for each axis
requested.

PR 1000 Specify A only as 1000
PR ,2000 Specify B only as 2000
PR ,,3000 Specify C only as 3000
PR ,,,4000 Specify D only as 4000
PR 2000, 4000,6000, 8000 Specify A,B,C and D
PR ,8000,,9000 Specify B and D only
PR 2,2,2,? Request A,B,C,D values
PR ,? Request B value only

The DMC-2x00 provides an alternative method for specifying data. Here data is specified individually
using a single axis specifier such as A, B, C or D. An equals sign is used to assign data to that axis.
For example:

PRA=1000 Specify a position relative movement for the A axis of 1000

ACB=200000 Specify acceleration for the B axis as 200000

Instead of data, some commands request action to occur on an axis or group of axes. For example, ST
AB stops motion on both the A and B axes. Commas are not required in this case since the particular

axis is specified by the appropriate letter A, B, C or D. If no parameters follow the instruction, action
will take place on all axes. Here are some examples of syntax for requesting action:

BG A Begin A only

BGB Begin B only

BG ABCD Begin all axes

BG BD Begin B and D only
BG Begin all axes

For controllers with 5 or more axes, the axes are referred to as A,B,C,D,E,F,G,H.

BG ABCDEFGH Begin all axes
BGD Begin D only

Coordinated Motion with more than 1 axis

When requesting action for coordinated motion, the letter S and T are used to specify coordinated
motion planes. For example:

BG S Begin coordinated sequence, S
BGTW Begin coordinated sequence, T, and D axis

60 e Chapter 5 Command Basics DMC-2X00

Command Syntax - Binary

Some commands have an equivalent binary value. Binary communication mode can be executed much
faster than ASCII commands. Binary format can only be used when commands are sent from the PC
and cannot be embedded in an application program.

Binary Command Format

All binary commands have a 4 byte header and is followed by data fields. The 4 bytes are specified in
hexadecimal format.

Header Format:

Byte 1

Specifies the command number between 80 to FF. The complete binary command number table is
listed below.

Byte 2
Specifies the # of bytes in each field as 0,1,2,4 or 6 as follows:

00 No datafields (i.e. SH or BG)

01 One byte per field

02 One word (2 bytes per field)

04 One long word (4 bytes) per field

06 Galil real format (4 bytes integer and 2 bytes fraction)
Byte 3
Specifies whether the command applies to a coordinated move as follows:

00 No coordinated motion movement

01 Coordinated motion movement

For example, the command STS designates motion to stop on a vector motion. The third byte for the
equivalent binary command would be 01.

Byte 4
Specifies the axis # or data field as follows
Bit 7 = H axis or 8" data field
Bit 6 = G axis or 7" data field
Bit 5 = F axis or 6" data field
Bit 4 = E axis or 5™ data field
Bit 3 = D axis or 4" data field
Bit 2 = C axis or 3" data field

DMC-2X00

Chapter 5 Command Basics ¢ 61

Bit 1 = B axis or 2™ data field
Bit 0 = A axis or 1* data field

Datafields Format

Datafields must be consistent with the format byte and the axes byte. For example, the command PR
1000,, -500 would be

A7 02000503 ES FE 0C
where A7 is the command number for PR
02 specifies 2 bytes for each data field
00 S is not active for PR
05 specifies bit 0 is active for A axis and bit 2 is active for C axis (2° + 2°=5)
03 ES8 represents 1000
FE OE represents -500

Example
The command ST ABCS would be
A10001 07
where Al is the command number for ST
00 specifies 0 data fields
01 specifies stop the coordinated axes S

07 specifies stop X (bit 0), Y (bit 1) and Z (bit 2) 2°+2'+2° =7

Binary Command Table

COMMAND NO. COMMAND NO. COMMAND No.
reserved 80 reserved ab reserved dé
KP 81 reserved ac reserved d7
KI 82 reserved ad RP d8
KD 83 reserved ae TP d9
DV 84 reserved af TE da
AF 85 LM b0 TD db
KF 86 LI bl TV dc
PL 87 VP b2 RL dd
ER 88 CR a3 TT de
IL 89 N b4 TS df
TL 8a LE, VE b5 TI el
MT 8b VT b6 SC el
CE 8c VA b7 reserved e2
OE 8d VD b8 reserved e3
FL 8e VS b9 reserved ed
BL 8f VR ba ™ e5

62 e Chapter 5 Command Basics DMC-2X00

AC 90 reserved bb CN e6
DC 91 reserved bc Lz e7
SP 92 CM bd OP e8
IT 93 CD be OB e9
FA 94 DT bf SB ea
Fv 95 ET c0 CB eb
GR 96 EM cl II ec
DP 97 EP c2 El ed
DE 98 EG c3 AL ee
OF 99 EB c4 reserved ef
GM 9a EQ c5 reserved o
reserved 9b EC c6 reserved f1
reserved 9¢c reserved c7 reserved 2
reserved 9d AM c8 reserved 3
reserved 9¢ MC c9 reserved 4
reserved 9f ™ ca reserved 5
BG a0 MF cb reserved fo
ST al MR cc reserved f7
AB a2 AD cd reserved 8
HM a3 AP ce reserved 9
FE a4 AR cf reserved fa
FI as AS do reserved fb
PA a6 Al dl reserved fc
PR a7 AT d2 reserved fd
IG a8 WT d3 reserved fe
MO a9 WwC d4 reserved ff
SH aa reserved ds

Controller Response to DATA

The DMC-2x00 returns a : for valid commands and a ? for invalid commands.

For example, if the command BG is sent in lower case, the DMC-2x00 will return a ?.
:bg <return> invalid command, lower case
? DMC-2x00 returns a ?

When the controller receives an invalid command the user can request the error code. The error code
will specify the reason for the invalid command response. To request the error code type the command
TC1. For example:

7TC1 <return> Tell Code command

1 Unrecognized Returned response

There are many reasons for receiving an invalid command response. The most common reasons are:
unrecognized command (such as typographical entry or lower case), command given at improper time
(such as during motion), or a command out of range (such as exceeding maximum speed). A complete
listing of all codes is listed in the TC command in the Command Reference section.

DMC-2X00

Chapter 5 Command Basics ® 63

Interrogating the Controller

Interrogation Commands

The DMC-2x00 has a set of commands that directly interrogate the controller. When the command is
entered, the requested data is returned in decimal format on the next line followed by a carriage return
and line feed. The format of the returned data can be changed using the Position Format (PF), Variable
Format (VF) and Leading Zeros (LZ) command. See Chapter 7 and the Command Reference.

Summary of Interrogation Commands

RP Renort Command Position
RL Report Latch

"RV Firmware Revision Information
SC Stop Code

TB Tell Status

TC Tell Error Code

TD Tell Dual Encoder

TE Tell Error

TI Tell Input

TP Tell Position

TR Trace

TS Tell Switches

TT Tell Torque

vV Tell Velocity

For example, the following example illustrates how to display the current position of the X axis:

TP A <return> Tell position A

0000000000 Controllers Response
TP AB <return> Tell position A and B
0000000000,0000000000 Controllers Response

Interrogating Current Commanded Values.

Most commands can be interrogated by using a question mark (?) as the axis specifier. Type the
command followed by a ? for each axis requested.

PR ?,2,2,? Request A,B,C,D values

PR.,? Request B value only

The controller can also be interrogated with operands.

Operands

Most DMC-2x00 commands have corresponding operands that can be used for interrogation.
Operands must be used inside of valid DMC expressions. For example, to display the value of an
operand, the user could use the command:

MG ‘operand’ where ‘operand’ is a valid DMC operand

64 ¢ Chapter 5 Command Basics DMC-2X00

All of the command operands begin with the underscore character (). For example, the value of the
current position on the A axis can be assigned to the variable ‘V’ with the command:

V= TPA

The Command Reference denotes all commands which have an equivalent operand as "Used as an
Operand". Also, see description of operands in Chapter 7.

Command Summary

For a complete command summary, see Command Reference manual.

DMC-2X00 Chapter 5 Command Basics ¢ 65

THIS PAGE LEFT BLANK INTENTIONALLY

66 e Chapter 5 Command Basics DMC-2X00

Chapter 6 Programming Motion

Overview

The DMC-2x00 provides several modes of motion, including independent positioning and jogging,
coordinated motion, electronic cam motion, and electronic gearing. Each one of these modes is
discussed in the following sections.

The DMC-2x10 is a single axis controller and uses A-axis motion only. Likewise, the DMC-2x20 uses
A and B, the DMC-2x30 uses A,B and C, and the DMC-2x40 uses A,B,C and D. The DMC-2x50 uses
A,B,C,D, and E. The DMC-2x60 uses A,B,C,D.E, and F. The DMC-2x70 uses A,B,C,D,E,F and G.
The DMC-2x80 uses the axes A,B,C,D,E,F,G, and H.

The example applications described below will help guide you to the appropriate mode of motion.

Example Application Mode of Motion Commands
Absolute or relative positioning where each axis is | Independent Axis Positioning PA,PR
independent and follows prescribed velocity SP,AC,DC
profile.
Velocity control where no final endpoint is Independent Jogging JIG
prescribed. Motion stops on Stop command. AC,DC
ST
Motion Path described as incremental position Contour Mode CM
points versus time. CD
DT
wC
2,3 or 4 axis coordinated motion where path is Linear Interpolation LM
described by linear segments. LLLE
VS,VR
VA,VD
2-D motion path consisting of arc segments and Coordinated Motion VM
linear segments, such as engraving or quilting. VP
CR
VS,VR
VA,VD
VE

DMC-2X00

Chapter 6 Programming Motion e 67

Third axis must remain tangent to 2-D motion path, | Coordinated motion with tangent | VM
such as knife cutting. axis specified VP
CR
VS,VA,VD
™N
VE
Electronic gearing where slave axes are scaled to Electronic Gearing GA
master axis which can move in both directions. GR
GM (if gantry)
Master/slave where slave axes must follow a Electronic Gearing GA
master such as conveyer speed. GR
Moving along arbitrary profiles or mathematically | Contour Mode CM
prescribed profiles such as sine or cosine CD
trajectories. DT
WC
Teaching or Record and Play Back Contour Mode with Automatic CM
Array Capture CD
DT
wC
RA
RD
RC
Backlash Correction Dual Loop DV
Following a trajectory based on a master encoder Electronic Cam EA
position EM
EP
ET
EB
EG
EQ
Smooth motion while operating in independent axis | Independent Motion Smoothing IT
positioning
Smooth motion while operating in vector or linear | Vector Smoothing VT
interpolation positioning
Smooth motion while operating with stepper Stepper Motor Smoothing KS
motors
Gantry - two axes are coupled by gantry Gantry Mode GR
GM

Independent Axis Positioning

In this mode, motion between the specified axes is independent, and each axis follows its own profile.
The user specifies the desired absolute position (PA) or relative position (PR), slew speed (SP),
acceleration ramp (AC), and deceleration ramp (DC), for each axis. On begin (BG), the DMC-2x00
profiler generates the corresponding trapezoidal or triangular velocity profile and position trajectory.
The controller determines a new command position along the trajectory every sample period until the
specified profile is complete. Motion is complete when the last position command is sent by the
DMC-2x00 profiler.

68 e Chapter 6 Programming Motion DMC-2X00

NOTE: The actual motor motion may not be complete when the profile has been completed, however,
the next motion command may be specified.

The Begin (BG) command can be issued for all axes either simultaneously or independently. ABC or
D axis specifiers are required to select the axes for motion. When no axes are specified, this causes
motion to begin on all axes.

The speed (SP) and the acceleration (AC) can be changed at any time during motion; however, the
deceleration (DC) and position (PR or PA) cannot be changed until motion is complete. Remember,
motion is complete when the profiler is finished, not when the actual motor is in position. The Stop
command (ST) can be issued at any time to decelerate the motor to a stop before it reaches its final

position.

An incremental position movement (IP) may be specified during motion as long as the additional move
is in the same direction. Here, the user specifies the desired position increment, n. The new target is
equal to the old target plus the increment, n. Upon receiving the IP command, a revised profile will be
generated for motion towards the new end position. The IP command does not require a BG.

NOTE: If the motor is not moving, the IP command is equivalent to the PR and BG command

combination.

Command Summary - Independent Axis

COMMAND DESCRIPTION

PR A,B,C,.D Specifies relative distance

PA AB,C.D Specifies absolute position

SP A,B,C,D Specifies slew speed

AC AB,C.D Specifies acceleration rate

DC A.B,C.D Specifies deceleration rate

BG ABCD Starts motion

ST ABCD Stops motion before end of move
IP A,B,C,D Changes position target

IT AB,C,D Time constant for independent motion smoothing
AM ABCD Trip point for profiler complete
MC ABCD Trip point for "in position"

The DMC-2x00 also allows use of single axis specifiers such as PRB=2000

Operand Summary - Independent Axis

OPERAND DESCRIPTION

_ACx Return acceleration rate for the axis specified by ‘x’

_DCx Return deceleration rate for the axis specified by ‘x’

_SPx Returns the speed for the axis specified by ‘x’

_PAx Returns current destination if ‘x’ axis is moving, otherwise returns the current commanded
position if in a move.

_PRx Returns current incremental distance specified for the ‘x’ axis

DMC-2X00

Chapter 6 Programming Motion e 69

Examples

Absolute Position Movement
Instruction
PA 10000,20000
AC 1000000,1000000
DC 1000000,1000000
SP 50000,30000
BG AB

Multiple Move Sequence
Required Motion Profiles:
A-Axis 500 counts
10000 count/sec

500000 counts/sec2
B-Axis 1000 counts
15000 count/sec

500000 counts/sec2
C-Axis 100 counts

5000 counts/sec

500000 counts/sec’

Interpretation

Specify absolute A,B position
Acceleration for A,B
Deceleration for A,B

Speeds for A,B

Begin motion

Position
Speed
Acceleration
Position
Speed
Acceleration
Position
Speed

Acceleration

This example will specify a relative position movement on A, B and C axes. The movement on each
axis will be separated by 20 msec. Fig. 6.1 shows the velocity profiles for the A,B and C axis.

Instruction
#A
PR 2000,500,100

SP 15000,10000,5000

AC 500000,500000,500000
DC 500000,500000,500000
BG A

WT 20

BGB

WT 20

BGC

EN

Interpretation
Begin Program

Specify relative position movement of 2000, 500 and 100 counts
for A,B and C axes.

Specify speed of 10000, 15000, and 5000 counts / sec
Specify acceleration of 500000 counts / sec? for all axes
Specify deceleration of 500000 counts / sec” for all axes
Begin motion on the A axis

Wait 20 msec

Begin motion on the B axis

Wait 20 msec

Begin motion on C axis

End Program

70 o Chapter 6 Programming Motion

DMC-2X00

VELOCITY

(COUNTS/SEC)
A axis velocity profile
20000 B B axis velocity profile
15000
C axis velocity profile
10000
5000
TIME (ms)
|/\ 1
0 20 40 60 80 100

Figure 6.1 - Velocity Profiles of ABC

Notes on fig 6.1: The A and B axis have a ‘trapezoidal’ velocity profile, while the C axis has a
‘triangular’ velocity profile. The A and B axes accelerate to the specified speed, move at this constant
speed, and then decelerate such that the final position agrees with the command position, PR. The C
axis accelerates, but before the specified speed is achieved, must begin deceleration such that the axis
will stop at the commanded position. All 3 axes have the same acceleration and deceleration rate,
hence, the slope of the rising and falling edges of all 3 velocity profiles are the same.

Independent Jogging

The jog mode of motion is very flexible because speed, direction and acceleration can be changed
during motion. The user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC)
rate for each axis. The direction of motion is specified by the sign of the JG parameters. When the
begin command is given (BG), the motor accelerates up to speed and continues to jog at that speed
until a new speed or stop (ST) command is issued. If the jog speed is changed during motion, the
controller will make an accelerated (or decelerated) change to the new speed.

An instant change to the motor position can be made with the use of the I[P command. Upon receiving
this command, the controller commands the motor to a position which is equal to the specified
increment plus the current position. This command is useful when trying to synchronize the position
of two motors while they are moving.

Note that the controller operates as a closed-loop position controller while in the jog mode. The DMC-
2x00 converts the velocity profile into a position trajectory and a new position target is generated every
sample period. This method of control results in precise speed regulation with phase lock accuracy.

Command Summary - Jogging

COMMAND DESCRIPTION

AC A.B.C.D Specifies acceleration rate

BG ABCD Begins motion

DC A.B.C.D Specifies deceleration rate

IP A.B.C.D Increments position instantly

IT A.B.C.D Time constant for independent motion smoothing
JG +/-A.B.C.D Specifies iog speed and direction

ST ABCD Stops motion

DMC-2X00 Chapter 6 Programming Motion e 71

Parameters can be set with individual axes specifiers such as JGB=2000 (set jog speed for B axis to
2000).

Operand Summary - Independent Axis

OPERAND DESCRIPTION
_ACx Return acceleration rate for the axis specified by ‘x’
_DCx Return deceleration rate for the axis specified by ‘x’
_SPx Returns the jog speed for the axis specified by ‘x’
_TVx Returns the actual velocity of the axis specified by ‘x” (averaged over .25 sec)
Examples
Jog in X only
Jog A motor at 50000 count/s. After A motor is at its jog speed, begin jogging C in reverse direction at
25000 count/s.
Instruction Interpretation
#A Label

AC 20000,,20000
DC 20000,,20000
JG 50000,,-25000
BG A

AS A

BG C

EN

Joystick Jogging

Specify A,C acceleration of 20000 cts / sec
Specify A,C deceleration of 20000 cts / sec
Specify jog speed and direction for A and C axis
Begin A motion

Wait until A is at speed

Begin C motion

The jog speed can also be changed using an analog input such as a joystick. Assume that for a 10 volt

input the speed must be 50000 counts/sec.

Instruction
#JOY

JGO

BGA

#B

vl =@AN[1]
vel=v1*50000/10
JG vel

JP #B

Interpretation
Label

Set in Jog Mode
Begin motion
Label for loop
Read analog input
Compute speed
Change JG speed
Loop

72 e Chapter 6 Programming Motion

DMC-2X00

Linear Interpolation Mode

The DMC-2x00 provides a linear interpolation mode for 2 or more axes. In linear interpolation mode,
motion between the axes is coordinated to maintain the prescribed vector speed, acceleration, and
deceleration along the specified path. The motion path is described in terms of incremental distances
for each axis. An unlimited number of incremental segments may be given in a continuous move
sequence, making the linear interpolation mode ideal for following a piece-wise linear path. There is
no limit to the total move length.

The LM command selects the Linear Interpolation mode and axes for interpolation. For example, LM
BC selects only the B and C axes for linear interpolation.

When using the linear interpolation mode, the LM command only needs to be specified once unless the
axes for linear interpolation change.

Specifying the Coordinate Plane

The DMC-2x00 allows for 2 separate sets of coordinate axes for linear interpolation mode or vector
mode. These two sets are identified by the letters S and T.

To specify vector commands the coordinate plane must first be identified. This is done by issuing the
command CAS to identify the S plane or CAT to identify the T plane. All vector commands will be
applied to the active coordinate system until changed with the CA command.

Specifying Linear Segments

The command LI a,b,c,d,e,f,g,h specifies the incremental move distance for each axis. This means
motion is prescribed with respect to the current axis position. Up to 511 incremental move segments
may be given prior to the Begin Sequence (BGS) command. Once motion has begun, additional LI
segments may be sent to the controller.

The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the
start of the motion. To stop the motion, use the instructions STS or AB. The command, ST, causes a
decelerated stop. The command, AB, causes an instantaneous stop and aborts the program, and the
command AB1 aborts the motion only.

The Linear End (LE) command must be used to specify the end of a linear move sequence. This
command tells the controller to decelerate to a stop following the last LI command. If an LE command
is not given, an Abort AB1 must be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the DMC-2x00 sequence buffer to
ensure continuous motion. If the controller receives no additional LI segments and no LE command,
the controller will stop motion instantly at the last vector. There will be no controlled deceleration.
LM? or LM returns the available spaces for LI segments that can be sent to the buffer. 511 returned
means the buffer is empty and 511 LI segments can be sent. A zero means the buffer is full and no
additional segments can be sent. As long as the buffer is not full, additional LI segments can be sent at
PC bus speeds.

The instruction _CS returns the segment counter. As the segments are processed, CS increases,
starting at zero. This function allows the host computer to determine which segment is being
processed.

DMC-2X00

Chapter 6 Programming Motion e 73

Additional Commands

The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration and
deceleration. The DMC-2x00 computes the vector speed based on the axes specified in the LM mode.
For example, LM ABC designates linear interpolation for the A,B and C axes. The vector speed for
this example would be computed using the equation:

V822A82+B82+C82, where AS, BS and CS are the speed of the A,B and C axes.

The controller always uses the axis specifications from LM, not LI, to compute the speed.

VT is used to set the S-curve smoothing constant for coordinated moves. The command AV n is the
‘After Vector’ trip point, which halts program execution until the vector distance of n has been
reached.

Specifying Vector Speed for Each Segment

The instruction VS has an immediate effect and, therefore, must be given at the required time. In some
applications, such as CNC, it is necessary to attach various speeds to different motion segments. This
can be done by two functions: <n and >m

For example: Llab,c,d<n>m

The first command, < n, is equivalent to commanding VSn at the start of the given segment and will
cause an acceleration toward the new commanded speeds, subjects to the other constraints.

The second function, > m, requires the vector speed to reach the value m at the end of the segment.
Note that the function > m may start the deceleration within the given segment or during previous
segments, as needed to meet the final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one
function may be masked by another. For example, if the function >100000 is followed by >5000, and
the distance for deceleration is not sufficient, the second condition will not be met. The controller will
attempt to lower the speed to 5000, but will reach that at a different point.

As an example, consider the following program.

Instruction Interpretation

#ALT Label for alternative program

DP 0,0 Define Position of A and B axis to be 0

LMAB Define linear mode between A and B axes.

LI 4000,0 <4000 >1000 Specify first linear segment with a vector speed of 4000 and end
speed 1000

LI 1000,1000 < 4000 >1000 Specify second linear segment with a vector speed of 4000 and end
speed 1000

LI0,5000 <4000 >1000 Specify third linear segment with a vector speed of 4000 and end
speed 1000

LE End linear segments

BGS Begin motion sequence

EN Program end

Changing Feed Rate:

The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of
0.0001. This command takes effect immediately and causes VS to be scaled. VR also applies when
the vector speed is specified with the ‘<’ operator. This is a useful feature for feed rate override. VR
does not ratio the accelerations. For example, VR 0.5 results in the specification VS 2000 to be
divided in half.

74 o Chapter 6 Programming Motion DMC-2X00

Command Summary - Linear Interpolation

COMMAND DESCRIPTION

LM abcdefgh Specify axes for linear interpolation

LM? Returns number of available spaces for linear segments in DMC-2x00 sequence
buffer. Zero means buffer full. 512 means buffer empty.

Llab,c,def,gh<n Specify incremental distances relative to current position, and assign vector speed n.

VSn Specify vector speed

VAn Specify vector acceleration

VDn Specity vector deceleration

VR n Specify the vector speed ratio

BGS Begin Linear Sequence

CS Clear sequence

LE Linear End- Required at end of LI command sequence

LE? Returns the length of the vector (resets after 2147483647)

AMS Trip point for After Sequence complete

AVn Trip point for After Relative Vector distance, n

VT S curve smoothing constant for vector moves

Operand Summary - Linear Interpolation

OPERAND DESCRIPTION

AV Return distance traveled

~CS Segment counter - returns number of the segment in the sequence, starting at zero.
_LE Returns length of vector (resets after 2147483647)

LM Returns number of available spaces for linear segments in DMC-2x00 sequence

buffer. Zero means buffer full. 512 means buffer empty.

_VPm Return the absolute coordinate of the last data point along the trajectory.
(m= A,B,C,D,E,F,G or H)

To illustrate the ability to interrogate the motion status, consider the first motion segment of our
example, #L.MOVE, where the A axis moves toward the point A=5000. Suppose that when A=3000,
the controller is interrogated using the command ‘MG _AV’. The returned value will be 3000. The
value of CS, VPA and VPB will be zero.

Now suppose that the interrogation is repeated at the second segment when B=2000. The value of
_AV at this point is 7000, CS equals 1, VPA=5000 and VPB=0.

Example

Linear Interpolation Motion

In this example, the AB system is required to perform a 90° turn. In order to slow the speed around
the corner, we use the AV 4000 trip point, which slows the speed to 1000 count/s. Once the motors
reach the corner, the speed is increased back to 4000 cts / s.

Instruction Interpretation
#LMOVE Label

DMC-2X00

Chapter 6 Programming Motion e 75

DP 0,0 Define position of A and B axes to be 0

LMAB Define linear mode between A and B axes.
LI 5000,0 Specify first linear segment
LI 0,5000 Specify second linear segment
LE End linear segments
VS 4000 Specify vector speed
BGS Begin motion sequence
AV 4000 Set trip point to wait until vector distance of 4000 is reached
VS 1000 Change vector speed
AV 5000 Set trip point to wait until vector distance of 5000 is reached
VS 4000 Change vector speed
EN Program end
Linear Move

Make a coordinated linear move in the CD plane. Move to coordinates 40000, 30000 counts at a
vector speed of 100000 counts/sec and vector acceleration of 1000000 counts/sec?.

Instruction Interpretation

LM CD Specify axes for linear interpolation
LI,,40000,30000 Specify CD distances

LE Specify end move

VS 100000 Specify vector speed

VA 1000000 Specify vector acceleration

VD 1000000 Specify vector deceleration

BGS Begin sequence

Note that the above program specifies the vector speed, VS, and not the actual axis speeds VC and VD.
The axis speeds are determined by the DMC-2x00 from:

VS =VC*+VD?

The resulting profile is shown in Figure 6.2.

76 o Chapter 6 Programming Motion DMC-2X00

30000

27000

POSITION D

3000

0 4000 36000 40000
POSITION C

FEEDRATE

0 0.1 0.5 0.6 TIME (sec)

VELOCITY
C-AXIS

TIME (sec)

VELOCITY
D-AXIS

TIME (sec)

Figure 6.2 - Linear Interpolation

DMC-2X00 Chapter 6 Programming Motion e 77

Multiple Moves

This example makes a coordinated linear move in the AB plane. The Arrays VA and VB are used to
store 750 incremental distances which are filled by the program #LOAD.

Instruction

#LOAD

DM VA [750],VB [750]
count=0

n=0

#LOOP

VA [count]=n

VB [count]=n

n=n+10

count = count +1

JP #LOOP, count <750
#A

LM AB

count =0
#LOOP2;JP#LOOP2, LM=0
JS#C, count =500

LI VA[count],VB[count]
count = count +1

JP #LOOP2, count <750
LE

AMS

MG "DONE"

EN

#C;BGS;EN

Interpretation

Load Program

Define Array

Initialize Counter

Initialize position increment
LOOP

Fill Array VA

Fill Array VB

Increment position
Increment counter

Loop if array not full

Label

Specify linear mode for AB
Initialize array counter

If sequence buffer full, wait
Begin motion on 500th segment
Specify linear segment
Increment array counter
Repeat until array done
End Linear Move

After Move sequence done
Send Message

End program

Begin Motion Subroutine

Vector Mode: Linear and Circular Interpolation Motion

The DMC-2x00 allows a long 2-D path consisting of linear and arc segments to be prescribed. Motion
along the path is continuous at the prescribed vector speed even at transitions between linear and
circular segments. The DMC-2x00 performs all the complex computations of linear and circular
interpolation, freeing the host PC from this time intensive task.

The coordinated motion mode is similar to the linear interpolation mode. Any pair of two axes may be
selected for coordinated motion consisting of linear and circular segments. In addition, a third axis can
be controlled such that it remains tangent to the motion of the selected pair of axes. Note that only one
pair of axes can be specified for coordinated motion at any given time.

The command VM m,n,p where ‘m’ and ‘n’ are the coordinated pair and p is the tangent axis.

NOTE: the commas which separate m,n and p are not necessary. For example, VM ABC selects the
AD axes for coordinated motion and the C-axis as the tangent.

Specifying the Coordinate Plane

The DMC-2x00 allows for 2 separate sets of coordinate axes for linear interpolation mode or vector
mode. These two sets are identified by the letters S and T.

78 o Chapter 6 Programming Motion DMC-2X00

To specify vector commands the coordinate plane must first be identified. This is done by issuing the
command CAS to identify the S plane or CAT to identify the T plane. All vector commands will be
applied to the active coordinate system until changed with the CA command.

Specifying Vector Segments

The motion segments are described by two commands; VP for linear segments and CR for circular
segments. Once a set of linear segments and/or circular segments have been specified, the sequence is
ended with the command VE. This defines a sequence of commands for coordinated motion.
Immediately prior to the execution of the first coordinated movement, the controller defines the current
position to be zero for all movements in a sequence.

NOTE: This ‘local’ definition of zero does not affect the absolute coordinate system or subsequent
coordinated motion sequences.

The command, VP xy specifies the coordinates of the end points of the vector movement with respect
to the starting point. Non-sequential axes do not require comma delimitation. The command, CR r,q,d
define a circular arc with a radius r, starting angle of q, and a traversed angle d. The convention for q
is that zero corresponds to the positive horizontal direction and, for both q and d, the counter-clockwise
(CCW) rotation is positive.

Up to 511 segments of CR or VP may be specified in a single sequence and must be ended with the
command VE. The motion can be initiated with a Begin Sequence (BGS) command. Once motion
starts, additional segments may be added.

The Clear Sequence (CS) command can be used to remove previous VP and CR commands which
were stored in the buffer prior to the start of the motion. To stop the motion, use the instructions STS
or AB1. ST stops motion at the specified deceleration. AB1 aborts the motion instantaneously.

The Vector End (VE) command must be used to specify the end of the coordinated motion. This
command requires the controller to decelerate to a stop following the last motion requirement. If a VE
command is not given, an Abort (AB1) must be used to abort the coordinated motion sequence.

It is the responsibility of the user to keep enough motion segments in the DMC-2x00 sequence buffer
to ensure continuous motion. If the controller receives no additional motion segments and no VE
command, the controller will stop motion instantly at the last vector. There will be no controlled
deceleration. LM? or LM returns the available spaces for motion segments that can be sent to the
buffer. 511 returned means the buffer is empty and 511 segments can be sent. A zero means the
buffer is full and no additional segments can be sent. As long as the buffer is not full, additional
segments can be sent at PC bus speeds.

The operand _CS can be used to determine the value of the segment counter.

Additional commands

The commands VS n, VA n and VD n are used for specifying the vector speed, acceleration, and
deceleration.

VT is the s curve smoothing constant used with coordinated motion.

Specifying Vector Speed for Each Segment:

The vector speed may be specified by the immediate command VS. It can also be attached to a motion
segment with the instructions

VP a,b<n>m

CRr1,0,0 <n>m

DMC-2X00 Chapter 6 Programming Motion e 79

The first command, <n, is equivalent to commanding VSn at the start of the given segment and will
cause an acceleration toward the new commanded speeds, subjects to the other constraints.

The second function, > m, requires the vector speed to reach the value m at the end of the segment.
Note that the function > m may start the deceleration within the given segment or during previous
segments, as needed to meet the final speed requirement, under the given values of VA and VD.

Note, however, that the controller works with one > m command at a time. As a consequence, one
function may be masked by another. For example, if the function >100000 is followed by >5000, and
the distance for deceleration is not sufficient, the second condition will not be met. The controller will
attempt to lower the speed to 5000, but will reach that at a different point.

Changing Feed rate:

The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .0001.
This command takes effect immediately and causes VS scaled. VR also applies when the vector speed
is specified with the ‘<’ operator. This is a useful feature for feed rate override. VR does not ratio the
accelerations. For example, VR .5 results in the specification VS 2000 to be divided by two

Compensating for Differences in Encoder Resolution:

By default, the DMC-2x00 uses a scale factor of 1:1 for the encoder resolution when used in vector
mode. If this is not the case, the command, ES can be used to scale the encoder counts. The ES
command accepts two arguments which represent the number of counts for the two encoders used for
vector motion. The smaller ratio of the two numbers will be multiplied by the higher resolution
encoder. For more information, see ES command in Chapter 11, Command Summary.

Trippoints:

The AV n command is the After Vector , which waits for the vector relative distance of n to occur
before executing the next command in a program.

Tangent Motion:

Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent to the
coordinated motion path. To handle these applications, the DMC-2x00 allows one axis to be specified
as the tangent axis. The VM command provides parameter specifications for describing the
coordinated axes and the tangent axis.

VM m,n,p m,n specifies coordinated axes p specifies tangent axis such as A,B,C or
D p=N turns off tangent axis

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and define
its offset and scale factor via the TN m,n command. m defines the scale factor in counts/degree and n
defines the tangent position that equals zero degrees in the coordinated motion plane. The operand
_TN can be used to return the initial position of the tangent axis.

Command Summary - Coordinated Motion Sequence

Command Description

VM m,n Specifies the axes for the planar motion where m and n represent the planar axes and p is
the tangent axis.

VP m,n Return coordinate of last point, where m=A,B,C or D.

CR 1,0, tA® Specifies arc segment where r is the radius, O is the starting angle and A® is the travel

angle. Positive direction is CCW.

VSn Specify vector speed or feed rate of sequence.

80 ¢ Chapter 6 Programming Motion DMC-2X00

VAn Specify vector acceleration along the sequence.

VD n Specify vector deceleration along the sequence.

VR n Specify vector speed ratio

BGS Begin motion sequence.

CS Clear sequence.

AV n Trip point for After Relative Vector distance, n.

AMS Holds execution of next command until Motion Sequence is complete.

TN m,n Tangent scale and offset.

ES m,n Ellipse scale factor.

VT S curve smoothing constant for coordinated moves

LM? Return number of available spaces for linear and circular segments in DMC-2x00
sequence buffer. Zero means buffer is full. 512 means buffer is empty.

Operand Summary - Coordinated Motion Sequence

operand Description

_VPM The absolute coordinate of the axes at the last intersection along the sequence.

_AV Distance traveled.

LM Number of available spaces for linear and circular segments in DMC-2x00 sequence
buffer. Zero means buffer is full. 512 means buffer is empty.

_CS Segment counter - Number of the segment in the sequence, starting at zero.

_VE Vector length of coordinated move sequence.

When AV is used as an operand, AV returns the distance traveled along the sequence.

The operands VPA and VPB can be used to return the coordinates of the last point specified along
the path.

Example

Tangent Axis

Assume an AB table with the C-axis controlling a knife. The C-axis has a 2000 quad counts/rev

encoder and has been initialized after power-up to point the knife in the +B direction. A 180° circular
cut is desired, with a radius of 3000, center at the origin and a starting point at (3000,0). The motion is
CCW, ending at (-3000,0). Note that the 0° position in the AB plane is in the +A direction. This
corresponds to the position -500 in the Z-axis, and defines the offset. The motion has two parts. First,
A, B and C are driven to the starting point, and later, the cut is performed. Assume that the knife is
engaged with output bit 0.

Instruction Interpretation

#EXAMPLE Example program

VM ABC AB coordinate with C as tangent

TN 2000/360,-500 2000/360 counts/degree, position -500 is 0 degrees in AB plane
CR 3000,0,180 3000 count radius, start at 0 and go to 180 CCW

VE End vector

CBO Disengage knife

DMC-2X00

Chapter 6 Programming Motion e 81

PA 3000,0, TN Move A and B to starting position, move C to initial tangent

position
BG ABC Start the move to get into position
AM ABC When the move is complete
SBO Engage knife
WT50 Wait 50 msec for the knife to engage
BGS Do the circular cut
AMS After the coordinated move is complete
CBO Disengage knife
MG "ALL DONE"
EN End program
Coordinated Motion

Traverse the path shown in Fig. 6.3. Feed rate is 20000 counts/sec. Plane of motion is AB.

Instruction Interpretation

VM AB Specify motion plane

VS 20000 Specify vector speed

VA 1000000 Specify vector acceleration
VD 1000000 Specify vector deceleration
VP -4000,0 Segment AB

CR 1500,270,-180 Segment BC

VP 0,3000 Segment CD

CR 1500,90,-180 Segment DA

VE End of sequence

BGS Begin Sequence

The resulting motion starts at the point A and moves toward points B, C, D, A. Suppose that we
interrogate the controller when the motion is halfway between the points A and B.

The value of AV is 2000
The value of CSis0
_VPA and VPB contain the absolute coordinate of the point A

Suppose that the interrogation is repeated at a point, halfway between the points C and D.
The value of AV is 4000+15007t+2000=10,712

The value of CSis2
_VPA, VPB contain the coordinates of the point C

82 o Chapter 6 Programming Motion DMC-2X00

C (-4000.3000) D (0.3000)

R =1500

B (-4000,0) A (0,0)

Figure 6.3 - The Required Path

Electronic Gearing

This mode allows up to 8§ axes to be electronically geared to some master axes. The masters may rotate
in both directions and the geared axes will follow at the specified gear ratio. The gear ratio may be
different for each axis and changed during motion.

The command GA ABCDEFGH specifies the master axes. GR a,b,c,d specifies the gear ratios for the
slaves where the ratio may be a number between +/-127.9999 with a fractional resolution of .0001.
There are two modes: standard gearing and gantry mode. The gantry mode is enabled with the
command GM. GR 0,0,0,0 turns off gearing in both modes. A limit switch or ST command disables
gearing in the standard mode but not in the gantry mode.

The command GM a,b,c,d select the axes to be controlled under the gantry mode. The parameter 1
enables gantry mode, and O disables it.

GR causes the specified axes to be geared to the actual position of the master. The master axis is
commanded with motion commands such as PR, PA or JG.

When the master axis is driven by the controller in the jog mode or an independent motion mode, it is
possible to define the master as the command position of that axis, rather than the actual position. The
designation of the commanded position master is by the letter, C. For example, GACA indicates that
the gearing is the commanded position of A.

An alternative gearing method is to synchronize the slave motor to the commanded vector motion of
several axes performed by GAS. For example, if the A and B motor form a circular motion, the C axis
may move in proportion to the vector move. Similarly, if A,B and C perform a linear interpolation
move, W can be geared to the vector move.

Electronic gearing allows the geared motor to perform a second independent or coordinated move in
addition to the gearing. For example, when a geared motor follows a master at a ratio of 1:1, it may be
advanced an additional distance with PR, or JG, commands, or VP, or LI.

DMC-2X00

Chapter 6 Programming Motion e 83

Command Summary - Electronic Gearing

command description

GAn Specifies master axes for gearing where:
n=A,B,C,D,.E,F,G,H for main encoder as master.

n=CA,CB,CC,CD,CE,CF,CG,CH for commanded position.
n= DA, DB, DC, DD, DE, DF,DG,DH for auxiliary encoders.

n=S or T for gearing to coordinated motion.

GR a,b,c,d,e,f,g,h | Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.

GM a,b,c.d,e,f,g,h | 1 sets gantry mode, 0 disables gantry mode.

MR a,b,c,d Trip point for reverse motion past specified value. Only one field may be used.
MF a,b,c,d Trip point for forward motion past specified value. Only one field may be used.
Example
Simple Master/Slave

Master axis moves 10000 counts at slew speed of 100000 counts/sec. B is defined as the master.
A,C,D are geared to master at ratios of 5,-.5 and 10 respectively.

Instruction Interpretation

GA B,,B.B Specify master axes as B
GR 5,,-.5,10 Set gear ratios

PR ,10000 Specify B position

SP ,100000 Specify B speed

BGB Begin motion

Electronic Gearing

Objective: Run two geared motors at speeds of 1.132 and -0.045 times the speed of an external master.
The master is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder).

Solution: Use a DMC-2x30 controller, where the C-axis is the master and A and B are the geared

axes.
Instruction Interpretation
MO C Turn C off, for external master
GAC,C Specify C as the master axis for both A and B.
GR 1.132,-.045 Specify gear ratios
Now suppose the gear ratio of the A-axis is to change on-the-fly to 2. This can be achieved by
commanding:
GR 2 Specify gear ratio for A axis to be 2
Gantry Mode

In applications where both the master and the follower are controlled by the DMC-2x00 controller, it
may be desired to synchronize the follower with the commanded position of the master, rather than the
actual position. This eliminates the coupling between the axes which may lead to oscillations.

84 ¢ Chapter 6 Programming Motion DMC-2X00

For example, assume that a gantry is driven by two axes, A and B, on both sides. This requires the
gantry mode for strong coupling between the motors. The A-axis is the master and the B-axis is the
follower. To synchronize B with the commanded position of A, use the instructions:

Instruction Interpretation

GA, CA Specify the commanded position of A as master for B.
GR,1 Set gear ratio for Y as 1:1

GM,1 Set gantry mode

PR 3000 Command A motion

BG A Start motion on A axis

You may also perform profiled position corrections in the electronic gearing mode. Suppose, for
example, that you need to advance the slave 10 counts. Simply command
IP,10 Specify an incremental position movement of 10 on B axis.

Under these conditions, this IP command is equivalent to:
PR,10 Specify position relative movement of 10 on B axis

BGB Begin motion on B axis

Often the correction is quite large. Such requirements are common when synchronizing cutting knives
or conveyor belts.

Synchronize two conveyor belts with trapezoidal velocity correction.

Instruction Interpretation

GAA Define A as the master axis for B.
GR,2 Set gear ratio 2:1 for B

PR,300 Specify correction distance
SP,5000 Specify correction speed
AC,100000 Specify correction acceleration
DC,100000 Specify correction deceleration
BGB Start correction

Electronic Cam

The electronic cam is a motion control mode which enables the periodic synchronization of several
axes of motion. Up to 7 axes can be slaved to one master axis. The master axis encoder must be input
through a main encoder port.

The electronic cam is a more general type of electronic gearing which allows a table-based relationship
between the axes. It allows synchronizing all the controller axes. For example, the DMC-2x80
controller may have one master and up to seven slaves.

To illustrate the procedure of setting the cam mode, consider the cam relationship for the slave axis B,
when the master is A. Such a graphic relationship is shown in Figure 6.4.

Step 1. Selecting the master axis

The first step in the electronic cam mode is to select the master axis. This is done with the
instruction

EAp wherep = A,B,C,D

p is the selected master axis

DMC-2X00 Chapter 6 Programming Motion e 85

For the given example, since the master is x, we specify EAA
Step 2. Specify the master cycle and the change in the slave axes.

In the electronic cam mode, the position of the master is always expressed modulo one cycle.
In this example, the position of x is always expressed in the range between 0 and 6000.
Similarly, the slave position is also redefined such that it starts at zero and ends at 1500. At
the end of a cycle when the master is 6000 and the slave is 1500, the positions of both A and
B are redefined as zero. To specify the master cycle and the slave cycle change, we use the
instruction EM.

EM a,b,c,d
where a,b,c,d specify the cycle of the master and the total change of the slaves over one cycle.

The cycle of the master is limited to 8,388,607 whereas the slave change per cycle is limited
to 2,147,483,647. If the change is a negative number, the absolute value is specified. For the
given example, the cycle of the master is 6000 counts and the change in the slave is 1500.
Therefore, we use the instruction:

EM 6000,1500
Step 3. Specify the master interval and starting point.

Next we need to construct the ECAM table. The table is specified at uniform intervals of
master positions. Up to 256 intervals are allowed. The size of the master interval and the
starting point are specified by the instruction:

EP m,n
where m is the interval width in counts, and n is the starting point.

For the given example, we can specify the table by specifying the position at the master points
of 0, 2000, 4000 and 6000. We can specify that by

EP 2000,0
Step 4. Specify the slave positions.
Next, we specify the slave positions with the instruction
ET[n]=a,b,c,d
where n indicates the order of the point.

The value, n, starts at zero and may go up to 256. The parameters A,B,C,D indicate the
corresponding slave position. For this example, the table may be specified by

ET[0]=,0
ET[1]=,3000
ET[2]=,2250
ET[3]=,1500
This specifies the ECAM table.
Step 5. Enable the ECAM

To enable the ECAM mode, use the command
EBn
where n=1 enables ECAM mode and n=0 disables ECAM mode.
Step 6. Engage the slave motion
To engage the slave motion, use the instruction
EGab,c,d

86 e Chapter 6 Programming Motion DMC-2X00

where a,b,c,d are the master positions at which the corresponding slaves must be engaged.

If the value of any parameter is outside the range of one cycle, the cam engages immediately.
When the cam is engaged, the slave position is redefined, modulo one cycle.

Step 7. Disengage the slave motion
To disengage the cam, use the command
EQa,b,c,d

where a,b,c,d are the master positions at which the corresponding slave axes are disengaged.

3000
2250
1500
0 2000 4000 6000 Master A
Figure 6.4: Electronic Cam Example

This disengages the slave axis at a specified master position. If the parameter is outside the master
cycle, the stopping is instantaneous.

Step 8. Create program to generate ECAM table

To illustrate the complete process, consider the cam relationship described by

the equation:

B=0.5%A+100sin (0.18+4)

where A is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or automatically by a program. The
following program includes the set-up. The instruction EAA defines A as the master axis.
The cycle of the master is 2000. Over that cycle, A varies by 1000. This leads to the
istruction EM 2000,1000.

Suppose we want to define a table with 100 segments. This implies increments of 20 counts each.
If the master points are to start at zero, the required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18A and A varies in
increments of 20, the phase varies by increments of 3.6°. The program then computes the
values of B according to the equation and assigns the values to the table with the instruction
ET[N]=,B.

DMC-2X00 Chapter 6 Programming Motion e 87

Instruction

#SETUP

EAA

EM 2000,1000

EP 20,0

n=0

#LOOP

p=n*3.6

s = @SIN [P] %100
b=n%10+s

ET [n]=b
n=n+l

JP #LOOP, n<=100
EN

Interpretation

Label

Select A as master

Cam cycles

Master position increments
Index

Loop to construct table from equation
Note 3.6 =0.18%20
Define sine position
Define slave position
Define table

Update Counter

Repeat the process

End Program

Step 9. Create program to run ECAM mode

Now suppose that the slave axis is engaged with a start signal, input 1, but that both the
engagement and disengagement points must be done at the center of the cycle: A = 1000 and
B =500. This implies that B must be driven to that point to avoid a jump.

This is done with the program:
Instruction

#RUN
EBI
PA,500
SP,5000
BGB
AM

All
EG,1000
Al-1
EQ,1000
EN

Interpretation

Label

Enable cam

starting position

B speed

Move B motor
After B moved
Wait for start signal
Engage slave

Wait for stop signal
Disengage slave

End

Command Summary - Electronic CAM

Command Describtion

EAp Specifies master axes for electronic cam where:

EBn Enables the ECAM

ECn ECAM counter - sets the index into the ECAM table
EGa.b.cd Engages ECAM

EM a.b.c.d Specifies the change in position for each axis of the CAM cvcle
EP m.n Defines CAM table entry size and offset

EQO m.n Disengages ECAM at specified position

ETIn] Defines the ECAM table entries

88 e Chapter 6 Programming Motion

DMC-2X00

Operand Summary - Electronic CAM

command description

_EB Contains State of ECAM

_EC Contains current ECAM index

_EGa Contains ECAM status for each axis

_EM Contains size of cycle for each axis

_EP Contains value of the ECAM table interval

_EQx Contains ECAM status for each axis
Example
Electronic CAM

The following example illustrates a cam program with a master axis, C, and two slaves, A and B

Instruction

#A;vI=0

PA 0,0;BGAB;AMAB

EAC

EM 0,0,4000

Ep4oop
ET[0]=0,0

=40,20

120,60
=240,120
=280,140
=280,140
280,140
240,120
120,60
4020

ET[1
ET[2
ET[3
ET[4
ET[S
ET[6
ET[7
ET[8
ET[9
ET[10
EB 1

JGC=4000
EG 0,0

BGC

=
]
=
=
=
]
]
]
]

#LOOP;JP#LOOP,vI=0
EQ2000,2000

MF,, 2000

STC
EB O
EN

Interpretation

Label; Initialize variable

Go to position 0,0 on A and B axes

C axis as the Master for ECAM
Change for C is 4000, zero for A, B
ECAM interval is 400 counts with zero start
When master is at 0 position; 1st point.
2nd point in the ECAM table

3rd point in the ECAM table

4th point in the ECAM table

5" point in the ECAM table

6" point in the ECAM table

7th point in the ECAM table

8th point in the ECAM table

9th point in the ECAM table

10th point in the ECAM table

Starting point for next cycle

Enable ECAM mode

Set C to jog at 4000

Engage both A and B when Master = 0
Begin jog on C axis

Loop until the variable is set
Disengage A and B when Master = 2000
Wait until the Master goes to 2000
Stop the C axis motion

Exit the ECAM mode

End of the program

The above example shows how the ECAM program is structured and how the commands can be given
to the controller. Figure 6.5 provides the results captured by the WSDK program. This shows how the
motion will be seen during the ECAM cycles. The first graph is for the A axis, the second graph
shows the cycle on the B axis and the third graph shows the cycle of the C axis.

DMC-2X00

Chapter 6 Programming Motion e 89

Three Storage Scopes]
File Collection Graph

First Scope:

Pyl

- ;H ___jih-::tual Position ___j
1an Zgam i ;Hurmal i
= Second Scope:

0 300 000 150 on =0

i‘r’ ihctual Position _____j
10 Zgam i ;Hurmal i
1hea Third Scope:
s ;2 ___j;h-::tual Position ____i
4]
Zgam i ;Hurmal i
=y 50 1000 1500 i ZE
LR Command String:
s | |
2001
1003
% 500 00 1500 o =0

Figure 6.5 — Position Profiles of XYZ

Contour Mode

The DMC-2x00 also provides a contouring mode. This mode allows any arbitrary position curve to be
prescribed for 1 to 8 axes. This is ideal for following computer generated paths such as parabolic,
spherical or user-defined profiles. The path is not limited to straight line and arc segments and the path
length may be infinite.

Specifying Contour Segments

The Contour Mode is specified with the command, CM. For example, CMAC specifies contouring on
the A and C axes. Any axes that are not being used in the contouring mode may be operated in other
modes.

A contour is described by position increments which are described with the command, CD a,b,c,d over

a time interval, DT n. The parameter, n, specifies the time interval. The time interval is defined as 2
ms, where n is a number between 1 and 8. The controller performs linear interpolation between the
specified increments, where one point is generated for each millisecond.

Consider, for example, the trajectory shown in Fig. 6.6. The position A may be described by the
points:

Point 1 A=0 at T=0ms
Point 2 A=48 at T=4ms
Point 3 A=288 at T=12ms
Point 4 A=336 at T=28ms

The same trajectory may be represented by the increments

90 e Chapter 6 Programming Motion DMC-2X00

Increment 1 DA=48 Time=4 DT=2
Increment 2 DA=240 Time=8 DT=3
Increment 3 DA=48 Time=16 DT=4

When the controller receives the command to generate a trajectory along these points, it interpolates
linearly between the points. The resulting interpolated points include the position 12 at 1 msec,

position 24 at 2 msec, etc.

The programmed commands to specify the above example are:

Instruction Interpretation

#A Label

CMA Specifies A axis for contour mode

DT 2 Specifies first time interval, 2% ms

CD 48;WC Specifies first position increment

DT 3 Specifies second time interval, 23 ms

CD 240;WC Specifies second position increment

DT 4 Specifies the third time interval, 2* ms

CD 48;WC Specifies the third position increment

DTO0;CDO Exits contour mode

EN

POSITION
(COUNTS)
336 [iiiiTToTenonooosoiiisciiiiiiiiiaes
288 e :
240 - '
192 N
96 - .
48 - , : TIME (ms)
i 1 | 1 1 1 | I
0 4 8 12 16 20 24 28
- SEGMENT 1. SEGMENT 2 SEGMENT 3

Figure 6.6 - The Required Trajectory

Additional Commands

The command, WC, is used as a trip point "When Complete". This allows the DMC-2x00 to use the
next increment only when it is finished with the previous one. Zero parameters for DT followed by

zero parameters for CD exit the contour mode.

If no new data record is found and the controller is still in the contour mode, the controller waits for
new data. No new motion commands are generated while waiting. If bad data is received, the

controller responds with a ?.

DMC-2X00

Chapter 6 Programming Motion e 91

Command Summary - Contour Mode
COMMAND DESCRIPTION

CM ABCDEFGH Specifies which axes for contouring mode. Any non-contouring axes may be
operated in other modes.

CD a,b,c,d,e,f,g,h Specifies position increment over time interval. Range is +/-32,000. (Zero ends
contour mode, when issued following DTO)

DTn Specifies time interval 2" msec for position increment, where n is an integer
between 1 and 8. Zero ends contour mode. If n does not change, it does not need
to be specified with each CD.

WwC Waits for previous time interval to be complete before next data record is
processed.

General Velocity Profiles

The Contour Mode is ideal for generating any arbitrary velocity profiles. The velocity profile can be
specified as a mathematical function or as a collection of points.

The design includes two parts: Generating an array with data points and running the program.

Example

Generating an Array

Consider the velocity and position profiles shown in Fig. 6.7. The objective is to rotate a motor a
distance of 6000 counts in 120 ms. The velocity profile is sinusoidal to reduce the jerk and the system
vibration. If we describe the position displacement in terms of A counts in B milliseconds, we can
describe the motion in the following manner:

W= %(l - cos(27zT/B))

x=AT —isin(znT/B)
B 2z

NOTE: o is the angular velocity; A is the position; and T is the variable, time, in milliseconds.

In the given example, A=6000 and B=120, the position and velocity profiles are:
A = 50T - (6000/27) sin (27t T/120)
Note that the velocity, ®, in count/ms, is

® =501 - cos 21 T/120]

92 e Chapter 6 Programming Motion DMC-2X00

Figure 6.7 - Velocity Profile with Sinusoidal Acceleration

The DMC-2x00 can compute trigonometric functions. However, the argument must be expressed in
degrees. Using our example, the equation for A is written as:

A =50T-955sin 3T

A complete program to generate the contour movement in this example is given below. To generate an
array, we compute the position value at intervals of 8 ms. This is stored at the array pos. Then, the
difference between the positions is computed and is stored in the array dir. Finally the motors are run
in the contour mode.

Contour Mode
Instruction Interpretation
#POINTS Program defines A points
DM pos[16] Allocate memory
DM dir[15]
¢=0;d=0 Set initial conditions, ¢ is index
d=0
t=0 t is time in ms
#A
v1=50%t
v2=3%t Argument in degrees
v3=-955*@SIN[v2]+v1 Compute position
v4=@INT[v3] Integer value of v3
pos[c]=v4 Store in array pos
t=t+8
c=c+1
JP #A,c<16
#B Program to find position differences
c=0
#e
d=c+1
dir[c]=pos[d]- pos|c] Compute the difference and store
c=c+1

DMC-2X00 Chapter 6 Programming Motion e 93

JP #c,c<15

EN End first program
#RUN Program to run motor
CMA Contour Mode

DT3 4 millisecond intervals
c=0

#E

CD difc] Contour Distance is in dif
WwC Wait for completion
c=c+l

JP #E,c<15

DTO

CDO0 Stop Contour

EN End the program

Teach (Record and Play-Back)

Several applications require teaching the machine a motion trajectory. Teaching can be accomplished
using the DMC-2x00 automatic array capture feature to capture position data. The captured data may
then be played back in the contour mode. The following array commands are used:

DM C[n] Dimension array

RA C[] Specify array for automatic record (up to 4 for DMC-2x40)

RD TPA Specify data for capturing (such as _TPA or TPC)

RC n,m Specify capture time interval where n is 2" samples, m is number of records
to be captured

RC?or RC Returns a 1 if recording

Record and Playback Example

Instruction Interpretation

#RECORD Begin Program

DPO Define position for A axis to be 0

DA*[] De-allocate all arrays

DM xpos [501] Dimension 501 element array called xpos

RA xpos [] Record Elements into xpos array

RD TPA Element to be recorded is encoder position of A axis
MOA Motor off for A axis

RC2 Begin Recording with a sample rate of 2* msec
#LOOP1;JP#LOOP1, RC=1 Loop until all elements have been recorded
#COMPUTE Routine to determine the difference between consecutive points
DM dx [500] Dimension a 500 element array to hold contour points
i=0 Set loop counter

#LOOP2 Loop to calculate the difference

DX[I]= xpos [i+1]- xpos [i] Calculate difference

=i+l Update loop counter

JP#LOOP2,i<500 Continue looping until dx is full

#PLAYBK Routine to play back motion that was recorded

94 ¢ Chapter 6 Programming Motion DMC-2X00

SHA Servo Here

WT1000 Wait 1 sec (1000 msec)

CMA Specify contour mode on A axis

DT2 Set contour data rate to be 2* msec

i=0 Set array index to 0

#LOOP3 Subroutine to execute contour points

CD dx[i];WC Contour data command; Wait for next contour point
i=i+1 Update index

JP#LOOP3,i<500 Continue until all array elements have been executed
DTO Set contour update rate to 0

CDO Disable the contour mode (combination of DT0 and CDO0)
EN End program

For additional information about automatic array capture, see Chapter 7, Arrays.

Virtual Axis

The DMC-2x00 controller has an additional virtual axis designated as the N axis. This axis has no
encoder and no DAC. However, it can be commanded by the commands:

AC, DC, JG, SP, PR, PA, BG, IT, GA, VM, VP, CR, ST, DP, RP, EA.

The main use of the virtual axis is to serve as a virtual master in ECAM modes, and to perform an
unnecessary part of a vector mode. These applications are illustrated by the following examples.

Ecam master example

Suppose that the motion of the AB axes is constrained along a path that can be described by an
electronic cam table. Further assume that the ecam master is not an external encoder but has to be a
controlled variable.

This can be achieved by defining the N axis as the master with the command EAN and setting the
modulo of the master with a command such as EMN= 4000. Next, the table is constructed. To move
the constrained axes, simply command the N axis in the jog mode or with the PR and PA commands.

For example,
PAN =2000
BGN

will cause the AB axes to move to the corresponding points on the motion cycle.

Sinusoidal Motion Example

The x axis must perform a sinusoidal motion of 10 cycles with an amplitude of 1000 counts and a
frequency of 20 Hz.

This can be performed by commanding the A and N axes to perform circular motion. Note that the
value of VS must be

VS=2p*R*F
where R is the radius, (amplitude) and F is the frequency in Hz.

Set VA and VD to maximum values for the fastest acceleration.

DMC-2X00 Chapter 6 Programming Motion e 95

Instruction Interpretation

VMAN Select Axes

VA 68000000 Maximum Acceleration
VD 68000000 Maximum Deceleration
VS 125664 VS for 20 Hz

CR 1000, -90, 3600 Ten Cycles

VE

BGS

Stepper Motor Operation

When configured for stepper motor operation, several commands are interpreted differently than from
servo mode. The following describes operation with stepper motors.

Specifying Stepper Motor Operation

In order to command stepper motor operation, the appropriate stepper mode jumpers must be installed.
See chapter 2 for this installation.

Stepper motor operation is specified by the command MT. The argument for MT is as follows:

2 specifies a stepper motor with active low step output pulses
-2 specifies a stepper motor with active high step output pulses
2.5 specifies a stepper motor with active low step output pulses and reversed direction
2.5 specifies a stepper motor with active high step output pulse and reversed direction

Stepper Motor Smoothing

The command, KS, provides stepper motor smoothing. The effect of the smoothing can be thought of
as a simple Resistor-Capacitor (single pole) filter. The filter occurs after the motion profiler and has
the effect of smoothing out the spacing of pulses for a more smooth operation of the stepper motor.
Use of KS is most applicable when operating in full step or half step operation. KS will cause the step
pulses to be delayed in accordance with the time constant specified.

When operating with stepper motors, you will always have some amount of stepper motor smoothing,
KS. Since this filtering effect occurs after the profiler, the profiler may be ready for additional moves
before all of the step pulses have gone through the filter. It is important to consider this effect since
steps may be lost if the controller is commanded to generate an additional move before the previous
move has been completed. See the discussion below, Monitoring Generated Pulses vs. Commanded
Pulses.

The general motion smoothing command, IT, can also be used. The purpose of the command, IT, is to
smooth out the motion profile and decrease 'jerk' due to acceleration.

Monitoring Generated Pulses vs. Commanded Pulses

For proper controller operation, it is necessary to make sure that the controller has completed
generating all step pulses before making additional moves. This is most particularly important if you
are moving back and forth. For example, when operating with servo motors, the trip point AM (After
Motion) is used to determine when the motion profiler is complete and is prepared to execute a new
motion command. However when operating in stepper mode, the controller may still be generating
step pulses when the motion profiler is complete. This is caused by the stepper motor smoothing filter,
KS. To understand this, consider the steps the controller executes to generate step pulses:

96 e Chapter 6 Programming Motion DMC-2X00

First, the controller generates a motion profile in accordance with the motion commands.

Second, the profiler generates pulses as prescribed by the motion profile. The pulses that are generated
by the motion profiler can be monitored by the command, RP (Reference Position). RP gives the
absolute value of the position as determined by the motion profiler. The command, DP, can be used to
set the value of the reference position. For example, DP 0, defines the reference position of the A axis
to be zero.

Third, the output of the motion profiler is filtered by the stepper smoothing filter. This filter adds a
delay in the output of the stepper motor pulses. The amount of delay depends on the parameter which
is specified by the command, KS. As mentioned earlier, there will always be some amount of stepper
motor smoothing. The default value for KS is 2 which corresponds to a time constant of 6 sample
periods.

Fourth, the output of the stepper smoothing filter is buffered and is available for input to the stepper
motor driver. The pulses which are generated by the smoothing filter can be monitored by the
command, TD (Tell Dual). TD gives the absolute value of the position as determined by actual output
of the buffer. The command, DP sets the value of the step count register as well as the value of the
reference position. For example, DP 0, defines the reference position of the A axis to be zero.

N N S thing Filter Output
Motion Profiler PH 9 Output Buffer utp
(Adds a Delay) — P j‘> (To Stepper Driver)
Reference Position (RP) Step Count Register (TD)

Figure 6.8 - Velocity Profiles of ABC

Motion Complete Trip point

When used in stepper mode, the MC command will hold up execution of the proceeding commands
until the controller has generated the same number of steps out of the step count register as specified in
the commanded position. The MC trip point (Motion Complete) is generally more useful than AM trip
point (After Motion) since the step pulses can be delayed from the commanded position due to stepper
motor smoothing.

Using an Encoder with Stepper Motors

An encoder may be used on a stepper motor to check the actual motor position with the commanded
position. If an encoder is used, it must be connected to the main encoder input.

NOTE: The auxiliary encoder is not available while operating with stepper motors. The position of
the encoder can be interrogated by using the command, TP. The position value can be defined by
using the command, DE.

NOTE: Closed loop operation with a stepper motor is not possible without special firmware. Contact
Galil for more information.

Command Summary - Stepper Motor Operation

command description

DE Define Encoder Position (When using an encoder)

DP Define Reference Position and Step Count Register

IT Motion Profile Smoothing - Independent Time Constant
KS Stepper Motor Smoothing

DMC-2X00

Chapter 6 Programming Motion e 97

MT

Motor Type (2,-2,2.5 or -2.5 for stepper motors)

Report Commanded Position

TD

Report number of step pulses generated by controller

TP

Tell Position of Encoder

Operand Summary - Stepper Motor Operation

operand

Description

DEa

Contains the value of the step count register for the ‘a’ axis

DPa

Contains the value of the main encoder for the ‘a’ axis

_ITa

Contains the value of the Independent Time constant for the 'a' axis

_KSa

Contains the value of the Stepper Motor Smoothing Constant for the 'a' axis

_MTa

Contains the motor type value for the 'a' axis

RPa

Contains the commanded position generated by the profiler for the ‘a’ axis

_TDa

Contains the value of the step count register for the ‘a’ axis

_TPa

Contains the value of the main encoder for the ‘a’ axis

Dual Loop (Auxiliary Encoder)

The DMC-2x00 provides an interface for a second encoder for each axis except for axes configured for
stepper motor operation and any axis used in circular compare. When used, the second encoder is
typically mounted on the motor or the load, but may be mounted in any position. The most common
use for the second encoder is backlash compensation, described below.

The second encoder may be a standard quadrature type, or it may provide pulse and direction. The
controller also offers the provision for inverting the direction of the encoder rotation. The main and
the auxiliary encoders are configured with the CE command. The command form is CE a,b,c,d (or
a,b,c,d,e,f,g,h for controllers with more than 4 axes) where the parameters a,b,c,d each equal the sum
of two integers m and n. m configures the main encoder and n configures the auxiliary encoder.

NOTE: This operation is not available for axes configured for stepper motors.

98 e Chapter 6 Programming Motion

DMC-2X00

Using the CE Command

m= | Main Encoder n= | Second Encoder

0 Normal quadrature 0 Normal quadrature

1 Pulse & direction 4 Pulse & direction

2 Reverse quadrature 8 Reversed quadrature

3 Reverse pulse & direction 12 Reversed pulse & direction

For example, to configure the main encoder for reversed quadrature, m=2, and a second encoder of
pulse and direction, n=4, the total is 6, and the command for the A axis is

CE6

Additional Commands for the Auxiliary Encoder

The command, DE a,b,c,d can be used to define the position of the auxiliary encoders. For example,
DE 0,500,-30,300

sets their initial values.

The positions of the auxiliary encoders may be interrogated with the command, DE?. For example
DE ?2,,?

returns the value of the A and C auxiliary encoders.

The auxiliary encoder position may be assigned to variables with the instructions
V1= _DEA

The command, TD a,b,c,d, returns the current position of the auxiliary encoder.

The command, DV a,b,c,d, configures the auxiliary encoder to be used for backlash compensation.

Backlash Compensation

There are two methods for backlash compensation using the auxiliary encoders:
1. Continuous dual loop
2. Sampled dual loop

To illustrate the problem, consider a situation in which the coupling between the motor and the load
has a backlash. To compensate for the backlash, position encoders are mounted on both the motor and
the load.

The continuous dual loop combines the two feedback signals to achieve stability. This method
requires careful system tuning, and depends on the magnitude of the backlash. However, once
successful, this method compensates for the backlash continuously.

The second method, the sampled dual loop, reads the load encoder only at the end point and performs a
correction. This method is independent of the size of the backlash. However, it is effective only in
point-to-point motion systems which require position accuracy only at the endpoint.

Example
Continuous Dual Loop

The motor (aux) encoder needs a finer resolution than load (main) encoder. Connect the load encoder
to the main encoder port and connect the motor encoder to the dual encoder port. The dual loop

DMC-2X00

Chapter 6 Programming Motion e 99

method splits the filter function between the two encoders. It applies the KP (proportional) and KI
(integral) terms to the position error, based on the load encoder, and applies the KD (derivative) term
to the motor encoder. This method results in a stable system.

The dual loop method is activated with the instruction DV (Dual Velocity), where
DV 1,1,1,1

activates the dual loop for the four axes and
Dv 0,0,0,0

disables the dual loop.

Note that the dual loop compensation depends on the backlash magnitude, and in extreme cases will
not stabilize the loop. The proposed compensation procedure is to start with KP=0, KI=0 and to
maximize the value of KD under the condition DV1. Once KD is found, increase KP gradually to a
maximum value, and finally, increase KI, if necessary.

Sampled Dual Loop

In this example, we consider a linear slide which is run by a rotary motor via a lead screw. Since the
lead screw has a backlash, it is necessary to use a linear encoder to monitor the position of the slide.
For stability reasons, it is best to use a rotary encoder on the motor.

Connect the rotary encoder to the A-axis and connect the linear encoder to the auxiliary encoder of A.
Assume that the required motion distance is one inch, and that this corresponds to 40,000 counts of the
rotary encoder and 10,000 counts of the linear encoder.

The design approach is to drive the motor a distance, which corresponds to 40,000 rotary counts. Once
the motion is complete, the controller monitors the position of the linear encoder and performs position
corrections.

This is done by the following program.

Instruction Interpretation
#DUALOOP Label

CEO Configure encoder

DEO Set initial value

PR 40000 Main move

BGA Start motion

#CORRECT Correction loop

AMA Wait for motion completion

v1=10000- DEA
v2=- TEA/4+vl

Find linear encoder error

Compensate for motor error

JPH#END,@ABS[v2]<2 Exit if error is small
PR v2*4 Correction move
BGA Start correction
JP#CORRECT Repeat

#END

EN

Motion Smoothing

The DMC-2x00 controller allows the smoothing of the velocity profile to reduce the mechanical
vibration of the system.

100 o« Chapter 6 Programming Motion DMC-2X00

Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum
value. The discontinuous acceleration results in jerk which causes vibration. The smoothing of the
acceleration profile leads to a continuous acceleration profile and reduces the mechanical shock and
vibration.

Using the IT and VT Commands:

@ When operating with servo motors, motion smoothing can be accomplished with the IT and VT
command. These commands filter the acceleration and deceleration functions to produce a smooth
velocity profile. The resulting velocity profile has continuous acceleration and results in reduced
mechanical vibrations.

The smoothing function is specified by the following commands:
IT a,b,c,d Independent time constant

VTn Vector time constant

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and the command,
VT, is used to smooth vector moves of the type VM and LM.

The smoothing parameters, a,b,c,d and n are numbers between 0 and 1 and determine the degree of
filtering. The maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles.
Smaller values of the smoothing parameters imply heavier filtering and smoother moves.

The following example illustrates the effect of smoothing. Fig. 6.9 shows the trapezoidal velocity
profile and the modified acceleration and velocity.

Note that the smoothing process results in longer motion time.

Example
Instruction Interpretation
PR 20000 Position
AC 100000 Acceleration
DC 100000 Deceleration
SP 5000 Speed
IT .5 Filter for smoothing
BG A Begin

DMC-2X00 Chapter 6 Programming Motion e 101

ACCELERATION

TIME
VELOCITY / \
TIME
ACCELERATION WITH
SMOOTHING / \
\ / TIME
VELOCITY WITH
SMOOTHING / \
TIME

Figure 6.9 - Trapezoidal velocity and smooth velocity profiles

Using the KS Command (Step Motor Smoothing):

E When operating with step motors, motion smoothing can be accomplished with the command, KS.
The KS command smoothes the frequency of step motor pulses. Similar to the commands, IT and VT,
this produces a smooth velocity profile.

The step motor smoothing is specified by the following command:
KS a,b,c,d where a,b,c,d is an integer from 0.5 to 8 and represents the
amount of smoothing

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and the command,
VT, is used to smooth vector moves of the type VM and LM.

The smoothing parameters, a,b,c,d and n are numbers between 0.5 and 8 and determine the degree of
filtering. The minimum value of 0.5 implies no filtering, resulting in trapezoidal velocity profiles.
Larger values of the smoothing parameters imply heavier filtering and smoother moves.

Note that KS is valid only for step motors.

102 o Chapter 6 Programming Motion DMC-2X00

Homing

The Find Edge (FE) and Home (HM) instructions may be used to home the motor to a mechanical
reference. This reference is connected to the Home input line. The HM command initializes the motor
to the encoder index pulse in addition to the Home input. The configure command (CN) is used to
define the polarity of the home input.

The Find Edge (FE) instruction is useful for initializing the motor to a home switch. The home switch
is connected to the Homing Input. When the Find Edge command and Begin is used, the motor will
accelerate up to the slew speed and slew until a transition is detected on the Homing line. The motor
will then decelerate to a stop. A high deceleration value must be input before the find edge command
is issued for the motor to decelerate rapidly after sensing the home switch. The velocity profile
generated is shown in Fig. 6.10.

The Home (HM) command can be used to position the motor on the index pulse after the home switch
is detected. This allows for finer positioning on initialization. The command sequence HM and BG
causes the following sequence of events to occur.

1. Upon begin, motor accelerates to the slew speed. The direction of its motion is determined by
the state of the homing input. A zero (GND) will cause the motor to start in the forward
direction; +5V will cause it to start in the reverse direction. The CN command is used to
define the polarity of the home input.

2. Upon detecting the home switch changing state, the motor begins decelerating to a stop.
3. The motor then traverses very slowly back until the home switch toggles again.
4. The motor then traverses forward until the encoder index pulse is detected.
5. The DMC-2x00 defines the home position (0) as the position at which the index was detected.
Example

Instruction Interpretation

#HOME Label

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

SP 5000 Speed for Home Search

HM A Home A

BG A Begin Motion

AM A After Complete

MG "AT HOME" Send Message

EN End

#EDGE Label

AC 2000000 Acceleration rate

DC 2000000 Deceleration rate

SP 8000 Speed

FEB Find edge command

BGB Begin motion

AMB After complete

MG "FOUND HOME"
DP,0
EN

Send message
Define position as 0
End

DMC-2X00

Chapter 6 Programming Motion ¢ 103

HOME SENSOR

HOME SWITCH ~HMA=1 _HMX=0
POSITION
VELOCITY
(1) MOTION BEGINS
TOWARD HOME
DIRECTION
POSITION

VELOCITY

MOTION REVERSE

(2) TOWARD HOME
DIRECTION

VELOCITY

3) MOTION TOWARD
INDEX
DIRECTION

| / POSITION

—

INDEX PULSES l

POSITION

Figure 6.10 - Motion intervals in the Home sequence

POSITION

104 o Chapter 6 Programming Motion

DMC-2X00

Command Summary - Homing Operation

command Description

FE ABCD Find Edge Routine. This routine monitors the Home Input

FI ABCD Find Index Routine - This routine monitors the Index Input

HM ABCD Home Routine - This routine combines FE and FI as Described Above
SC ABCD Stop Code

TS ABCD Tell Status of Switches and Inputs

Operand Summary - Homing Operation

Operand Description

_HMa Contains the value of the state of the Home Input
_SCa Contains stop code

_TSa Contains status of switches and inputs

High Speed Position Capture (The Latch Function)

Often it is desirable to capture the position precisely for registration applications. The DMC-2x00
provides a position latch feature. This feature allows the position of the main or auxiliary encoders of
A,B,C or D to be captured when the latch input changes state. This function can be setup such that the
position is captured when the latch input goes high or low. When the latch function is enabled for
active low operation, the position will be captured within 12 microseconds. When the latch function is
enabled for active high operation, the position will be captured within 35 microseconds. Each axis has
one general input associated to the axis for position capture:

Input Function Input Function

IN1 A Axis Latch INO9 E Axis Latch
IN2 B Axis Latch IN10 F Axis Latch
IN3 C Axis Latch IN11 G Axis Latch
IN4 D Axis Latch IN12 H Axis Latch

The DMC-2x00 software commands, AL and RL, are used to arm the latch and report the latched
position. The steps to use the latch are as follows:

1. Give the AL ABCD command to arm the latch for the main encoder and ALSASBSCSD for
the auxiliary encoders.

2. Test to see if the latch has occurred (Input goes low) by using the AL A or B or C or D
command. Example, V1= ALA returns the state of the A latch into V1. V1 is 1 if the latch
has not occurred.

3. After the latch has occurred, read the captured position with the RL ABCD command or RL
ABCD.

NOTE: The latch must be re-armed after each latching event.

DMC-2X00 Chapter 6 Programming Motion e 105

Example

Instruction
#LATCH

JG,5000

BGB

AL B

#WAIT

JP #WAIT, ALB=1
Result=_RLB
Result=

EN

Interpretation

Latch program

Jog B

Begin motion on B axis

Arm Latch for B axis

#Wait label for loop

Jump to #Wait label if latch has not occurred

Set ‘Result’ equal to the reported position of y axis
Print result

End

106 o Chapter 6 Programming Motion

DMC-2X00

Chapter 7 Application
Programming

Overview

The DMC-2x00 provides a powerful programming language that allows users to customize the
controller for their particular application. Programs can be downloaded into the DMC-2x00 memory
freeing the host computer for other tasks. However, the host computer can send commands to the
controller at any time, even while a program is being executed. Only ASCII commands can be used
for application programming.

In addition to standard motion commands, the DMC-2x00 provides commands that allow the DMC-
2x00 to make its own decisions. These commands include conditional jumps, event triggers and
subroutines. For example, the command JPALOOP, n<10 causes a jump to the label #LOOP if the
variable n is less than 10.

For greater programming flexibility, the DMC-2x00 provides user-defined variables, arrays and
arithmetic functions. For example, with a cut-to-length operation, the length can be specified as a
variable in a program which the operator can change as necessary.

The following sections in this chapter discuss all aspects of creating applications programs. The
program memory size is 80 characters x 1000 lines.

Using the DOS Editor to Enter Programs (DMC-2000

only)

The DMC-2000 has an internal editor which may be used to create and edit programs in the controller's
memory. The internal editor is opened by the command ED. Note that the command ED will not open
the internal editor if issued from Galil's Window based software - in this case, a Windows based editor
will be automatically opened. The Windows based editor provides much more functionality and ease-
of-use, therefore, the internal editor is most useful when using a simple terminal with the controller and
a Windows based editor is not available.

Once the ED command has been given, each program line is automatically numbered sequentially
starting with 000. If no parameter follows the ED command, the editor prompter will default to the last
line of the last program in memory. If desired, the user can edit a specific line number or label by
specifying a line number or label following ED.

NOTE: ED command only accepts a parameter (such as #BEGIN) in DOS Window. For general
purposes, the editing features in this section are not applicable when not in DOS mode.

DMC-2X00

Chapter 7 Application Programming ¢ 107

Instruction Interpretation

:ED Puts Editor at end of last program
:ED 5 Puts Editor at line 5
:ED #BEGIN Puts Editor at label #BEGIN

Line numbers appear as 000,001,002 and so on. Program commands are entered following the line
numbers. Multiple commands may be given on a single line as long as the total number of characters
doesn't exceed 80 characters per line.

While in the Edit Mode, the programmer has access to special instructions for saving, inserting and
deleting program lines. These special instructions are listed below:

Edit Mode Commands
<RETURN>

Typing the return key causes the current line of entered instructions to be saved. The editor will
automatically advance to the next line. Thus, hitting a series of <RETURN> will cause the editor to
advance a series of lines. Note, changes on a program line will not be saved unless a <return> is given.

<cntrl>P
The <cntrl>P command moves the editor to the previous line.
<cntrl>]

The <cntrl>I command inserts a line above the current line. For example, if the editor is at line
number 2 and <cntrl>I is applied, a new line will be inserted between lines 1 and 2. This new line will
be labeled line 2. The old line number 2 is renumbered as line 3.

<cntrl>D

The <cntrl>D command deletes the line currently being edited. For example, if the editor is at line
number 2 and <cntrl>D is applied, line 2 will be deleted. The previous line number 3 is now
renumbered as line number 2.

<cntrl>Q
The <cntrl>Q quits the editor mode. In response, the DMC-2000 will return a colon.

After the Edit session is over, the user may list the entered program using the LS command. If no
operand follows the LS command, the entire program will be listed. The user can start listing at a
specific line or label using the operand n. A command and new line number or label following the
start listing operand specifies the location at which listing is to stop.

Example
Instruction Interpretation
:LS List entire program
LSS5 Begin listing at line 5
:LS 5,9 List lines 5 thru 9
LS #A,9 List line label #A thru line 9
LS #A, #A +5 List line label #A and additional 5 lines

NOTE: Editor is not available for DMC-2100, however, any terminal may be used (i.e. Telnet)

108 ¢ Chapter 7 Application Programming DMC-2X00

Program Format

A DMC program consists of DMC-2x00 instructions combined to solve a machine control application.
Action instructions, such as starting and stopping motion, are combined with Program Flow
instructions to form the complete program. Program Flow instructions evaluate real-time conditions,
such as elapsed time or motion complete, and alter program flow accordingly.

Each DMC-2x00 instruction in a program must be separated by a delimiter. Valid delimiters are the
semicolon (;) or carriage return. The semicolon is used to separate multiple instructions on a single
program line where the maximum number of instructions on a line is limited by 80 characters. A
carriage return enters the final command on a program line.

Using Labels in Programs

All DMC-2x00 programs must begin with a label and end with an End (EN) statement. Labels start
with the pound (#) sign followed by a maximum of seven characters. The first character must be a
letter; after that, numbers are permitted. Spaces are not permitted.

The maximum number of labels which may be defined is 510, for firmware 1.0c and higher.

Valid labels

#BEGIN
#SQUARE
#X1
#BEGIN1
Invalid labels
#1Square
#123
Example
Instruction Interpretation
#START Beginning of the Program
PR 10000,20000 Specify relative distances on A and B axes
BG AB Begin Motion
AM Wait for motion complete
WT 2000 Wait 2 sec
JP #START Jump to label START
EN End of Program

The above program moves A and B 10000 and 20000 units. After the motion is complete, the motors
rest for 2 seconds. The cycle repeats indefinitely until the stop command is issued.

Special Labels

The DMC-2x00 has some special labels, which are used to define input interrupt subroutines, limit
switch subroutines, error handling subroutines, and command error subroutines. See section on Auto-
Start Routine

The DMC-2x00 has a special label for automatic program execution. A program which has been saved
into the controller’s non-volatile memory can be automatically executed upon power up or reset by

DMC-2X00

Chapter 7 Application Programming ¢ 109

beginning the program with the label #AUTO. The program must be saved into non-volatile memory
using the command, BP.

Automatic Subroutines for Monitoring Conditions on page 122.

#ININT Label for Input Interrupt subroutine

#LIMSWI Label for Limit Switch subroutine

#POSERR Label for excess Position Error subroutine

#MCTIME Label for timeout on Motion Complete trip point
#CMDERR Label for incorrect command subroutine

#COMINT Label for communication interrupt on the aux. serial port
#TCPERR Label for TCP/IP communication error (2100 and 2200 only)

Commenting Programs

There are two methods for commenting programs. The first method uses the NO command and allows
for programs to be embedded into Galil programs. The second method used the REM statement and
requires the use of Galil software.

NO Command

The DMC-2x00 provides a command, NO, for commenting programs. This command allows the user
to include up to 78 characters on a single line after the NO command and can be used to include
comments from the programmer as in the following example:

Instruction Interpretation
#PATH Label
NO 2-D CIRCULAR PATH Comment - No Operation
VMAB Vector Mode
NO VECTOR MOTION ON A AND B Comment - No Operation
VS 10000 Vector Speed
NO VECTOR SPEED IS 10000 Comment - No Operation
VP -4000,0 Vector Position
NO BOTTOM LINE Comment - No Operation
CR 1500,270,-180 Circle Motion
NO HALF CIRCLE MOTION Comment - No Operation
VP 0,3000 Vector Position
NO TOP LINE Comment - No Operation
CR 1500,90,-180 Circle
NO HALF CIRCLE MOTION Comment - No Operation
VE Vector End
NO END VECTOR SEQUENCE Comment - No Operation
BGS Begin Sequence
NO BEGIN SEQUENCE MOTION Comment - No Operation
EN End of Program
NO END OF PROGRAM Comment - No Operation

NOTE: The NO command is an actual controller command. Therefore, inclusion of the NO
commands will require process time by the controller.

HINT: Some users annotate their programs using the word “NOTE:”; everything after the “NO” is a
comment.

110 o Chapter 7 Application Programming DMC-2X00

REM Command

If you are using Galil software to communicate with the DMC-2x00 controller, you may also include
REM statements. ‘REM’ statements begin with the word ‘REM” and may be followed by any
comments which are on the same line. The Galil terminal software will remove these statements when
the program is downloaded to the controller. For example:

#PATH

REM 2-D CIRCULAR PATH
VMAB

REM VECTOR MOTION ON A AND B
VS 10000

REM VECTOR SPEED IS 10000
VP -4000,0

REM BOTTOM LINE

CR 1500,270,-180

REM HALF CIRCLE MOTION

VP 0,3000

REM TOP LINE

CR 1500,90,-180

REM HALF CIRCLE MOTION

VE

REM END VECTOR SEQUENCE
BGS

REM BEGIN SEQUENCE MOTION
EN

REM END OF PROGRAM

These REM statements will be removed when this program is downloaded to the controller.

Executing Programs - Multitasking

The DMC-2x00 can run up to 8 independent programs simultaneously. These programs are called
threads and are numbered 0 through 7, where 0 is the main thread. Multitasking is useful for executing
independent operations such as PLC functions that occur independently of motion.

The main thread differs from the others in the following ways:
1. Only the main thread, thread 0, may use the input command, IN.

2. When automatic subroutines are implemented for limit switches, position errors or command errors,
they are executed in thread 0.

To begin execution of the various programs, use the following instruction:
XQ#A,n

Where n indicates the thread number. To halt the execution of any thread, use the instruction
HX'n

where n is the thread number.

Note that both the XQ and HX commands can be performed by an executing program.

The example below produces a waveform on Output 1 independent of a move.

DMC-2X00 Chapter 7 Application Programming * 111

Instruction

Interpretation

#TASK1 Task1 label

ATO Initialize reference time

CB1 Clear Output 1

#LOOP1 Loopl1 label

AT 10 Wait 10 msec from reference time
SB1 Set Output 1

AT -40 Wait 40 msec from reference, then initialize reference
CB1 Clear Output 1

JP #LOOP1 Repeat Loopl

#TASK2 Task?2 label

XQ #TASK1,1 Execute Task1

#LOOP2 Loop2 label

PR 1000 Define relative distance

BGX Begin motion

AMX After motion done

WT 10 Wait 10 msec

JP #LOOP2,@IN[2]=1 Repeat motion unless Input 2 is low
HX Halt all tasks

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the
main thread (i.e. Thread 0). #TASK1 is executed within TASK?2.

Debugging Programs

The DMC-2x00 provides commands and operands which are useful in debugging application
programs. These commands include interrogation commands to monitor program execution,
determine the state of the controller and the contents of the controllers program, array, and variable
space. Operands also contain important status information which can help to debug a program.

Trace Commands (DMC-2100/2200 only)

The trace command causes the controller to send each line in a program to the host computer
immediately prior to execution. Tracing is enabled with the command, TR1. TRO turns the trace
function off.

NOTE: When the trace function is enabled, the line numbers as well as the command line will be
displayed as each command line is executed.

Data which is output from the controller is stored in the output UART. The UART buffer can store up
to 128 characters of information. In normal operation, the controller places output into the FIFO
buffer. When the trace mode is enabled, the controller will send information to the UART buffer at a
very high rate. In general, the UART will become full because the hardware handshake line will halt
serial data until the correct data is read. When the UART becomes full, program execution will be
delayed until it is cleared. If the user wants to avoid this delay, the command CW,1 can be given.
This command causes the controller to throw away the data which can not be placed into the FIFO. In
this case, the controller does not delay program execution.

112 o Chapter 7 Application Programming DMC-2X00

Error Code Command

When there is a program error, the DMC-2x00 halts the program execution at the point where the error
occurs. To display the last line number of program execution, issue the command, MG _ED.

The user can obtain information about the type of error condition that occurred by using the command,
TC1. This command reports back a number and a text message which describes the error condition.
The command, TCO or TC, will return the error code without the text message. For more information
about the command, TC, see the Command Reference.

Stop Code Command

The status of motion for each axis can be determined by using the stop code command, SC. This can
be useful when motion on an axis has stopped unexpectedly. The command SC will return a number
representing the motion status. See the command reference for further information.

RAM Memory Interrogation Commands

For debugging the status of the program memory, array memory, or variable memory, the DMC-2x00
has several useful commands. The command, DM ?, will return the number of array elements
currently available. The command, DA ?, will return the number of arrays which can be currently
defined. For example, a standard DMC-2x10 will have a maximum of 8000 array elements in up to 30
arrays. If an array of 100 elements is defined, the command DM ? will return the value 7900 and the
command DA ? will return 29.

To list the contents of the variable space, use the interrogation command LV (List Variables). To list
the contents of array space, use the interrogation command, LA (List Arrays). To list the contents of
the Program space, use the interrogation command, LS (List). To list the application program labels
only, use the interrogation command, LL (List Labels).

Operands

In general, all operands provide information which may be useful in debugging an application
program. Below is a list of operands which are particularly valuable for program debugging. To
display the value of an operand, the message command may be used. For example, since the operand,
_ED contains the last line of program execution, the command MG _ED will display this line number.

_ED contains the last line of program execution. Useful to determine where program stopped.
_DL contains the number of available labels.

_UL contains the number of available variables.

_DA contains the number of available arrays.

_ DM contains the number of available array elements.

_AB contains the state of the Abort Input

_FLa contains the state of the forward limit switch for the 'a' axis

_RLa contains the state of the reverse limit switch for the 'a' axis

Example

The following program has an error. It attempts to specify a relative movement while the A-axis is
already in motion. When the program is executed, the controller stops at line 003. The user can then
query the controller using the command, TC1. The controller responds with the corresponding
explanation:

DMC-2X00

Chapter 7 Application Programming ¢ 113

Instruction

:ED

000 #A

001 PR1000

002 BGA

003 PR5000

004 EN

<cntrl> Q

XQ #A

2003 PR5000

'TC1

?7 Command not valid while running.
:ED 3

003 AMX;PR5000;BGA
<cntrl> Q

XQ #A

Interpretation

Edit Mode

Program Label

Position Relative 1000
Begin

Position Relative 5000
End

Quit Edit Mode
Execute #A

Error on Line 3

Tell Error Code
Command not valid while running
Edit Line 3

Add After Motion Done
Quit Edit Mode
Execute #A

Program Flow Commands

The DMC-2x00 provides instructions to control program flow. The DMC-2x00 program sequencer
normally executes program instructions sequentially. The program flow can be altered with the use of
event triggers, trippoints, and conditional jump statements.

Event Triggers & Trippoints

To function independently from the host computer, the DMC-2x00 can be programmed to make
decisions based on the occurrence of an event. Such events include waiting for motion to be complete,
waiting for a specified amount of time to elapse, or waiting for an input to change logic levels.

The DMC-2x00 provides several event triggers that cause the program sequencer to halt until the
specified event occurs. Normally, a program is automatically executed sequentially one line at a time.
When an event trigger instruction is decoded, however, the actual program sequence is halted. The
program sequence does not continue until the event trigger is "tripped". For example, the motion
complete trigger can be used to separate two move sequences in a program. The commands for the
second move sequence will not be executed until the motion is complete on the first motion sequence.
In this way, the DMC-2x00 can make decisions based on its own status or external events without

intervention from a host computer.

NOTE: It is not recommended to send trip point commands (e.g. AM) from the PC to a DMC-
2100/2200. The buffer becomes filled easily when using event triggers which would halt

communications between the host and the controller.

114 o Chapter 7 Application Programming

DMC-2X00

DMC(C-2x00 Event Triggers

Command

Function

AMABCDEFGHoOrS

Halts program execution until motion is complete on
the specified axes or motion sequence(s). AM with no
parameter tests for motion complete on all axes. This
command is useful for separating motion sequences in
a program.

ADAorBorCorDorEorForGorH

Halts program execution until position command has
reached the specified relative distance from the start of
the move. Only one axis may be specified at a time.

ARAorBorCorDorEorForGorH

Halts program execution until after specified distance
from the last AR or AD command has elapsed. Only
one axis may be specified at a time.

APAorBorCorDorEorForGorH

Halts program execution until after absolute position
occurs. Only one axis may be specified at a time.

MFAorBorCorDorEorForGorH

Halt program execution until after forward motion
reached absolute position. Only one axis may be
specified. If position is already past the point, then
MF will trip immediately. Will function on geared
axis or aux. inputs.

MR AorBorCorDorEorForGorH

Halt program execution until after reverse motion
reached absolute position. Only one axis may be
specified. If position is already past the point, then
MR will trip immediately. Will function on geared
axis or aux. inputs.

MCAorBorCorDorEorForGorH

Halt program execution until after the motion profile
has been completed and the encoder has entered or
passed the specified position. TW A,B,C,D sets
timeout to declare an error if not in position. If
timeout occurs, then the trip point will clear and the
stop code will be set to 99. An application program
will jump to label #¥MCTIME.

Al+/-n

Halts program execution until after specified input is
at specified logic level. n specifies input line.
Positive is high logic level, negative is low level. n=1
through 8 for DMC-2x10, 2x20, 2x30, 2x40. n=1
through 16 for DMC-2x50, 2x60, 2x70, 2x80. n=17
through 80 for DMC-2xx0.

ASABCDEFGH

Halts program execution until specified axis has
reached its slew speed.

AT +/-n

Halts program execution until n msec from reference
time. AT O sets reference. AT n waits n msec from
reference. AT -n waits n msec from reference and sets
new reference after elapsed time.

AV n

Halts program execution until specified distance along
a coordinated path has occurred.

WTn

Halts program execution until specified time in msec
has elapsed.

DMC-2X00

Chapter 7 Application Programming ¢ 115

Example- Multiple Move Sequence

The AM trip point is used to separate the two PR moves. If AM is not used, the controller returns a ?
for the second PR command because a new PR cannot be given until motion is complete.

Instruction Interpretation
#TWOMOVE Label

PR 2000 Position Command

BGA Begin Motion

AMA Wait for Motion Complete
PR 4000 Next Position Move

BGA Begin 2nd move

EN End program

Example- Set Output after Distance

Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trip
point is the speed multiplied by the sample period.

Instruction Interpretation
#SETBIT Label

SP 10000 Speed is 10000

PA 20000 Specify Absolute position
BGA Begin motion

AD 1000 Wait until 1000 counts
SB1 Set output bit 1

EN End program

Example- Repetitive Position Trigger

To set the output bit every 10000 counts during a move, the AR is used as shown in the next example.

Instruction Interpretation
#TRIP Label

JG 50000 Specity Jog Speed
BGA;n=0 Begin Motion
#REPEAT # Repeat Loop
AR 10000 Wait 10000 counts
TPA Tell Position

SB1 Set output 1
WT50 Wait 50 msec
CB1 Clear output 1
n=n+1 Increment counter
JP #REPEAT n<5 Repeat 5 times
STA Stop

EN End

Example - Start Motion on Input

This example waits for input 1 to go low and then starts motion.

116 o Chapter 7 Application Programming DMC-2X00

NOTE: The Al command actually halts execution of the program until the input occurs. If you do not
want to halt the program sequences, you can use the Input Interrupt function (II) or use a conditional
jump on an input, such as JP #GO,@IN[1] =1.

Instruction Interpretation
#INPUT Program Label

Al-1 Wait for input 1 low
PR 10000 Position command
BGA Begin motion

EN End program

Example - Set Output when At Speed

Instruction Interpretation
#ATSPEED Program Label

JG 50000 Specify jog speed

AC 10000 Acceleration rate

BGA Begin motion

ASA Wait for at slew speed 50000
SB1 Set output 1

EN End program

Example - Change Speed along Vector Path

The following program changes the or vector speed at the specified distance along the vector. The
vector distance is measured from the start of the move or from the last AV command.

Instruction Interpretation
#VECTOR Label

VMAB;VS 5000 Coordinated path
VP 10000,20000 Vector position

VP 20000,30000 Vector position

VE End vector

BGS Begin sequence

AV 5000 After vector distance
VS 1000 Reduce speed

EN End

DMC-2X00 Chapter 7 Application Programming ® 117

Example - Multiple Move with Wait

This example makes multiple relative distance moves by waiting for each to be complete before
executing new moves.

Instruction Interpretation

#MOVES Label

PR 12000 Distance

SP 20000 Speed

AC 100000 Acceleration

BGA Start Motion

AD 10000 Wait a distance of 10,000 counts
SP 5000 New Speed

AMA Wait until motion is completed
WT 200 Wait 200 ms

PR -10000 New Position

SP 30000 New Speed

AC 150000 New Acceleration

BGA Start Motion

EN End

Example- Define Output Waveform Using AT

The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle repeats
every 50 msec.

Instruction Interpretation

#OUTPUT Program label

ATO Initialize time reference

SB1 Set Output 1

#LOOP Loop

AT 10 After 10 msec from reference,
CB1 Clear Output 1

AT -40 Wait 40 msec from reference and reset reference
SB1 Set Output 1

JP #LOOP Loop

EN

Conditional Jumps

The DMC-2x00 provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions
for branching to a new program location based on a specified condition. The conditional jump
determines if a condition is satisfied and then branches to a new location or subroutine. Unlike event
triggers, the conditional jump instruction does not halt the program sequence. Conditional jumps are
useful for testing events in real-time. They allow the DMC-2x00 to make decisions without a host
computer. For example, the DMC-2x00 can decide between two motion profiles based on the state of
an input line.

118 e Chapter 7 Application Programming DMC-2X00

Command Format - JP and JS
FORMAT: DESCRIPTION

JS destination, logical condition | Jump to subroutine if logical condition is satisfied

JP destination, logical condition | Jump to location if logical condition is satisfied

The destination is a program line number or label where the program sequencer will jump if the
specified condition is satisfied. Note that the line number of the first line of program memory is 0.
The comma designates "IF". The logical condition tests two operands with logical operators.

Logical operators:

OPERATOR DESCRIPTION

< less than

> greater than

= equal to

<= less than or equal to
>= greater than or equal to
<> not equal

Conditional Statements

The conditional statement is satisfied if it evaluates to any value other than zero. The conditional
statement can be any valid DMC-2x00 numeric operand, including variables, array elements, numeric
values, functions, keywords, and arithmetic expressions. If no conditional statement is given, the jump
will always occur.

Number V1=6

Numeric Expression V1=V7*6
@ABS[VI1]>10

Array Element V1<Count[2]

Variable V1<V2

Internal Variable _TPA=0
_TVA>500

/0 VI>@AN]2]
@IN[1]=0

Multiple Conditional Statements

The DMC-2x00 will accept multiple conditions in a single jump statement. The conditional statements
are combined in pairs using the operands “&” and “|”. The “&” operand between any two conditions,
requires that both statements must be true for the combined statement to be true. The “|” operand
between any two conditions, requires that only one statement be true for the combined statement to be
true.

NOTE: Each condition must be placed in parentheses for proper evaluation by the controller. In
addition, the DMC-2x00 executes operations from left to right. For further information on
Mathematical Expressions and the bit-wise operators ‘&’ and ‘|’, see pg 128.

For example, using variables named V1, V2, V3 and V4:
JP #TEST, (VI<V2) & (V3<V4)

DMC-2X00

Chapter 7 Application Programming ¢ 119

In this example, this statement will cause the program to jump to the label #TEST if V1 is less than V2
and V3 is less than V4. To illustrate this further, consider this same example with an additional
condition:

JP #TEST, (V1<V2) & (V3<V4)) | (V5<V6)

This statement will cause the program to jump to the label #TEST under two conditions; 1. If V1 is
less than V2 and V3 is less than V4. OR 2. If V5 is less than V6.

Examples

If the condition for the JP command is satisfied, the controller branches to the specified label or line
number and continues executing commands from this point. If the condition is not satisfied, the
controller continues to execute the next commands in sequence.

Instruction Interpretation
JP #LOOP,count<10 Jump to #LOOP if the variable, count, is less than 10
JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE?2 if input 1 is logic level high. After

the subroutine MOVE?2 is executed, the program sequencer
returns to the main program location where the subroutine was

called.

JP #BLUE,@ABS[v2]>2 Jump to #BLUE if the absolute value of variable, v2, is greater
than 2

JP #C,v1*v7<=v8*v2 Jump to #C if the value of v1 times v7 is less than or equal to the
value of v8*v2

JP#A Jump to #A

Move the A motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec
between moves.

Instruction Interpretation
#BEGIN Begin Program

count=10 Initialize loop counter
#LOOP Begin loop

PA 1000 Position absolute 1000
BGA Begin move

AMA Wait for motion complete
WT 100 Wait 100 msec

PAO Position absolute 0

BGA Begin move

AMA Wait for motion complete
WT 100 Wait 100 msec

count = count -1 Decrement loop counter
JP #LOQOP, count >0 Test for 10 times thru loop
EN End Program

If, Else, and Endif

The DMC-2x00 provides a structured approach to conditional statements using IF, ELSE and ENDIF
commands.

120 o Chapter 7 Application Programming DMC-2X00

Using the IF and ENDIF Commands

An IF conditional statement is formed by the combination of an IF and ENDIF command. The IF
command has as its arguments one or more conditional statements. If the conditional statement(s)
evaluates true, the command interpreter will continue executing commands which follow the IF
command. If the conditional statement evaluates false, the controller will ignore commands until the
associated ENDIF command is executed OR an ELSE command occurs in the program (see discussion
of ELSE command below).

NOTE: An ENDIF command must always be executed for every IF command that has been executed.
It is recommended that the user not include jump commands inside IF conditional statements since this
causes redirection of command execution. In this case, the command interpreter may not execute an
ENDIF command.

Using the ELSE Command

The ELSE command is an optional part of an IF conditional statement and allows for the execution of
command only when the argument of the IF command evaluates False. The ELSE command must
occur after an IF command and has no arguments. If the argument of the IF command evaluates false,
the controller will skip commands until the ELSE command. If the argument for the IF command
evaluates true, the controller will execute the commands between the IF and ELSE command.

Nesting IF Conditional Statements

The DMC-2x00 allows for IF conditional statements to be included within other IF conditional
statements. This technique is known as mesting' and the DMC-2x00 allows up to 255 IF conditional
statements to be nested. This is a very powerful technique allowing the user to specify a variety of
different cases for branching.

Command Format - IF, ELSE and ENDIF

Format: description

Execute commands proceeding IF command (up to ELSE command) if
conditional statement(s) is true, otherwise continue executing at ENDIF
command or optional ELSE command.

IF conditional statement(s)

ELSE Optional command. Allows for commands to be executed when argument
of IF command evaluates not true. Can only be used with IF command.

ENDIF Command to end IF conditional statement. Program must have an ENDIF

command for every IF command.

Instruction Interpretation

#TEST Begin Main Program "TEST"

IL,,3 Enable interrupts on input 1 and input 2
MG "WAITING FOR INPUT 1, INPUT 2" Output message

#LOOP Label to be used for endless loop

JP #LOOP Endless loop

EN End of main program

#ININT Input Interrupt Subroutine

IF (@IN[1]=0)
IF (@IN[2]=0)
MG "INPUT 1 AND INPUT 2 ARE ACTIVE"

IF conditional statement based on input 1
2™ IF executed if 1° IF conditional true

Message executed if 2" IF is true

DMC-2X00

Chapter 7 Application Programming ¢ 121

ELSE ELSE command for 2™ IF statement
MG "ONLY INPUT 1 IS ACTIVE Message executed if 2" IF is false
ENDIF End of 2™ conditional statement
ELSE ELSE command for 1% IF statement
MG"ONLY INPUT 2 IS ACTIVE" Message executed if 1% IF statement
ENDIF End of 1% conditional statement
#WAIT Label to be used for a loop
JPHWAIT,(@IN[1]=0) | (@IN[2]=0) Loop until Input 1& 2 are not active
RIO End Input Interrupt Routine without restoring
trippoints
Subroutines

A subroutine is a group of instructions beginning with a label and ending with an End command (EN).
Subroutines are called from the main program with the jump subroutine instruction JS, followed by a
label or line number, and conditional statement. Up to 8 subroutines can be nested. After the
subroutine is executed, the program sequencer returns to the program location where the subroutine
was called unless the subroutine stack is manipulated as described in the following section.

An example of a subroutine to draw a square of 500 counts per side is given below. The square is
drawn at vector position 1000, 1000.

Instruction Interpretation

#M Begin Main Program

CB1 Clear Output Bit 1 (pick up pen)
VP 1000,1000;LE;BGS Define vector position; move pen
AMS Wait for after motion trip point
SB1 Set Output Bit 1 (put down pen)
JS #SQUARE;CB1 Jump to SQUARE subroutine
EN End Main Program

SQUARE SQUARE subroutine
v1=500;JS #L Define length of side

vi=-v1;JS #L Switch direction

EN End subroutine

#L;PR v1,v1;BGA
AMA;BGB;AMB
EN

Stack Manipulation

It is possible to manipulate the subroutine stack by using the ZS command. Every time a JS
instruction, interrupt or automatic routine (such as #POSERR or #LIMSWI) is executed, the subroutine
stack is incremented by 1. Normally the stack is restored with an EN instruction. Occasionally it is
desirable not to return back to the program line where the subroutine or interrupt was called. The ZS1
command clears 1 level of the stack. This allows the program sequencer to continue to the next line.
The ZS0 command resets the stack to its initial value. For example, if a limit occurs and the #LIMSWI
routine is executed, it is often desirable to restart the program sequence instead of returning to the
location where the limit occurred. To do this, give a ZS command at the end of the #LIMSWI routine.

Auto-Start Routine

The DMC-2x00 has a special label for automatic program execution. A program which has been saved
into the controller’s non-volatile memory can be automatically executed upon power up or reset by

Define A,B; Begin A
After motion on A, Begin B

End subroutine

122 o Chapter 7 Application Programming DMC-2X00

beginning the program with the label #AUTO. The program must be saved into non-volatile memory
using the command, BP.

Automatic Subroutines for Monitoring Conditions

Often it is desirable to monitor certain conditions continuously without tying up the host or DMC-2x00
program sequences. The DMC-2x00 can monitor several important conditions in the background.
These conditions include checking for the occurrence of a limit switch, a defined input, position error,
or a command error. Automatic monitoring is enabled by inserting a special, predefined label in the
applications program. The pre-defined labels are:

SUBROUTINE DESCRIPTION

#LIMSWI Limit switch on any axis goes low

#ININT Input specified by II goes low

#POSERR Position error exceeds limit specified by ER

#MCTIME Motion Complete timeout occurred. Timeout period set by TW command
#CMDERR Bad command given

#COMINT (DMC-2000 only) | Communication Interrupt Routine

#TCPERR TCP/IP communication error (2100 and 2200 only)

For example, the #POSERR subroutine will automatically be executed when any axis exceeds its
position error limit. The commands in the #POSERR subroutine could decode which axis is in error
and take the appropriate action. In another example, the #ININT label could be used to designate an
input interrupt subroutine. When the specified input occurs, the program will be executed
automatically.

NOTE: An application program must be running for automatic monitoring to function.

Example - Limit Switch:

This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSWI routine
to function, the DMC-2x00 must be executing an applications program from memory. This can be a
very simple program that does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN.
Motion commands, such as JG 5000 can still be sent from the PC even while the "dummy"
applications program is being executed.

Instruction Interpretation

:ED Edit Mode

000 #LOOP Dummy Program

001 JP #LOOP;EN Jump to Loop

002 #LIMSWI Limit Switch Label

003 MG "LIMIT OCCURRED" Print Message

004 RE Return to main program
<control> Q Quit Edit Mode

:XQ #LOOP Execute Dummy Program
:JG 5000 Jog

:BGA Begin Motion

Chapter 7 Application Programming e 123

Now, when a forward limit switch occurs on the A axis, the #LIMSWI subroutine will be executed

Notes regarding the #LIMSWI Routine:

1) The RE command is used to return from the #LIMSWI subroutine.

2) The #LIMSWI subroutine will be re-executed if the limit switch remains active.

The #LIMSWI routine is only executed when the motor is being commanded to move.

Example - Position Error
Instruction
:ED
000 #LOOP
001 JP #LOOP;EN
002 #POSERR
003 vi=_TEA
004 MG "EXCESS POSITION ERROR"
005 MG "ERROR=",v1=
006 RE
<control> Q
:XQ #LOOP
JG 100000
:BGX

Example - Input Interrupt

Instruction

#A

111

JG 30000,,,60000
BGAD
#LOOP;JP#LOOP;EN
#ININT

STAD;AM

#TEST;JP #TEST, @IN[1]=0
JG 30000,,,6000
BGAD

RIO

Interpretation

Edit Mode

Dummy Program
Loop

Position Error Routine
Read Position Error
Print Message

Print Error

Return from Error
Quit Edit Mode
Execute Dummy Program
Jog at High Speed
Begin Motion

Interpretation
Label
Input Interrupt on 1
Jog
Begin Motion
Loop
Input Interrupt
Stop Motion
Test for Input 1 still low
Restore Velocities

Begin motion

Return from interrupt routine to Main Program and do not re-

enable trippoints

124 o Chapter 7 Application Programming

DMC-2X00

Example - Motion Complete Timeout

Instruction
#BEGIN

TW 1000

PA 10000

BGA

MCA

EN

#MCTIME

MG “A fell short”
EN

Interpretation

Begin main program

Set the time out to 1000 ms
Position Absolute command
Begin motion

Motion Complete trip point
End main program

Motion Complete Subroutine
Send out a message

End subroutine

This simple program will issue the message “A fell short” if the A axis does not reach the commanded
position within 1 second of the end of the profiled move.

Example - Command Error

Instruction

#BEGIN

IN "ENTER SPEED", speed
JG speed;BGA

JP #BEGIN

EN

#CMDERR

JP#DONE, ED<>2
JP#DONE, TC<>6

MG "SPEED TOO HIGH"
MG "TRY AGAIN"

ZS1

JP #BEGIN

#DONE

ZS0

EN

Interpretation
Begin main program
Prompt for speed

Begin motion

Repeat

End main program
Command error utility
Check if error on line 2
Check if out of range
Send message

Send message

Adjust stack

Return to main program
End program if other error
Zero stack

End program

The above program prompts the operator to enter a jog speed. If the operator enters a number out of
range (greater than 8 million), the #CMDERR routine will be executed prompting the operator to enter

a new number.

In multitasking applications, there is an alternate method for handling command errors from different
threads. Using the XQ command along with the special operands described below allows the

controller to either skip or retry invalid commands.

OPERAND FUNCTION

_ED1 Returns the number of the thread that generated an error

_ED2 Retry failed command (operand contains the location of the failed command)

_ED3 Skip failed command (operand contains the location of the command after the failed
command)

DMC-2X00

Chapter 7 Application Programming e 125

The operands are used with the XQ command in the following format:

XQ ED2 (or ED3), EDIL,1

Where the “,1” at the end of the command line indicates a restart; therefore, the existing program stack
will not be removed when the above format executes.

The following example shows an error correction routine which uses the operands.

Example - Command Error w/Multitasking

Instruction
#A
JPH#A
EN
#B
n=-1
KPn
TY
EN
#CMDERR
IF (_TC=6)
N=1
XQ ED2, EDI,1
ENDIF
IF (_TC=1)
XQ ED3, EDI,1
ENDIF
EN

Interpretation

Begin thread 0 (continuous loop)

End of thread 0

Begin thread 1

Create new variable

Set KP to value of N, an invalid value
Issue invalid command

End of thread 1

Begin command error subroutine

If error is out of range (KP -1)

Set N to a valid number

Retry KP N command

If error is invalid command (TY)

Skip invalid command

End of command error routine

Example - Communication Interrupt

A DMC-2x10 is used to move the A axis back and forth from 0 to 10000. This motion can be paused,
resumed and stopped via input from an auxiliary port terminal.

Instruction
#BEGIN
CC 9600,0,0,0

CI2

MG {P2}"Type 0 to stop motion"
MG {P2}"Type 1 to pause motion"
MG {P2}"Type 2 to resume motion"
rate=2000

SPA=rate

#LOOP

PAA=10000

BGA

AMA

PAA=0

Interpretation
Label for beginning of program

Setup communication configuration for auxiliary serial
port

Setup communication interrupt for auxiliary serial port
Message out of auxiliary port

Message out of auxiliary port

Message out of auxiliary port

Variable to remember speed

Set speed of A axis motion

Label for Loop

Move to absolute position 10000

Begin Motion on A axis

Wait for motion to be complete

Move to absolute position 0

126 o Chapter 7 Application Programming

DMC-2X00

For additional information, see section on page.

BGA

AMA

JP #LOOP

EN

#COMINT

JP #STOP,P2CH="0"
JP #PAUSE,P2CH="1"
JP #RESUME,P2CH="2"
ENI,1

#STOP

STA;ZS;EN

#PAUSE
RATE=_SPA
SPA=0
EN1,1
#RESUME
SPA=RATE
EN1,1

Begin Motion on A axis

Wait for motion to be complete

Continually loop to make back and forth motion
End main program

Interrupt Routine

Check for S (stop motion)

Check for P (pause motion)

Check for R (resume motion)

Do nothing

Routine for stopping motion

Stop motion on A axis; Zero program stack; End
Program

Routine for pausing motion

Save current speed setting of A axis motion

Set speed of A axis to zero (allows for pause)
Re-enable trip-point and communication interrupt
Routine for resuming motion

Set speed on A axis to original speed

Re-enable trip-point and communication interrupt

Example — Ethernet Communication Error

This simple program executes in the DMC-2100/2200 and indicates (via the serial port) when a

communication handle fails. By monitoring the serial port, the user can re-establish communication if

needed.

Instruction
#LOOP
JP#LOOP

EN

#TCPERR
MG {P1} 1A4

RE

Interpretation

Simple program loop

Ethernet communication error auto routine

Send message to serial port indicating which handle

did not receive proper acknowledgment.

DMC-2X00

Chapter 7 Application Programming e 127

Mathematical and Functional Expressions

Mathematical Operators

For manipulation of data, the DMC-2x00 provides the use of the following mathematical operators:

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division

& Logical And (Bit-wise)

| Logical Or (On some computers, a solid vertical line appears as a broken line)
0 Parenthesis

The numeric range for addition, subtraction and multiplication operations is +/-2,147,483,647.9999.
The precision for division is 1/65,000.

Mathematical operations are executed from left to right. Calculations within parentheses have

precedence.
speed=7.5*v1/2 The variable, speed, is equal to 7.5 multiplied by v1 and
divided by 2
count= count +2 The variable, count, is equal to the current value plus 2.
result=_TPA-(@COS[45]*40) Puts the position of A - 28.28 in result. 40 * cosine of 45°
is 28.28
temp=@IN[1]&@IN[2] temp is equal to 1 only if Input 1 and Input 2 are high

Bit-Wise Operators

The mathematical operators & and | are bit-wise operators. The operator, &, is a Logical And. The
operator, |, is a Logical Or. These operators allow for bit-wise operations on any valid DMC-2x00
numeric operand, including variables, array elements, numeric values, functions, keywords and
arithmetic expressions. The bit-wise operators may also be used with strings. This is useful for
separating characters from an input string. When using the input command for string input, the input
variable will hold up to 6 characters. These characters are combined into a single value which is
represented as 32 bits of integer and 16 bits of fraction. Each ASCII character is represented as one
byte (8 bits), therefore the input variable can hold up to six characters. The first character of the string
will be placed in the top byte of the variable and the last character will be placed in the lowest
significant byte of the fraction. The characters can be individually separated by using bit-wise
operations as illustrated in the following example:

Instruction Interpretation
#TEST Begin main program
IN "ENTER",len{S6} Input character string of up to 6 characters into
variable ‘len’
flen=@FRAC][len] Define variable ‘flen’ as fractional part of variable
‘len’

128 e Chapter 7 Application Programming DMC-2X00

flen=$10000* flen
len1=(flen &$00FF)

len2=(flen &$FF00)/$100

len3= len &$000000FF

len4=(len &$0000FF00)/$100
len5=(len &$00FF0000)/$10000
len6=(len &$FF000000)/$1000000
MG len6 {S4}

MG len5 {S4}

MG lend {S4}

MG len3 {S4}

MG len2 {S4}

MG lenl {S4}

EN

Shift flen by 32 bits (IE - convert fraction, flen, to
integer)

Mask top byte of flen and set this value to variable
‘lenl’

Let variable, ‘len2’ = top byte of flen

Let variable, ‘len3’ = bottom byte of len

Let variable, ‘len4’ = second byte of len

Let variable, ‘len5’ = third byte of len

Let variable, ‘len6’ = fourth byte of len

Display ‘len6’ as string message of up to 4 chars
Display ‘len5’ as string message of up to 4 chars
Display ‘len4’ as string message of up to 4 chars
Display ‘len3’ as string message of up to 4 chars
Display ‘len2’ as string message of up to 4 chars

Display ‘lenl’ as string message of up to 4 chars

This program will accept a string input of up to 6 characters, parse each character, and then display
each character. Notice also that the values used for masking are represented in hexadecimal (as
denoted by the preceding ‘$’). For more information, see section Sending Messages.

To illustrate further, if the user types in the string “TESTME” at the input prompt, the controller will

respond with the following:

WMz 5w o

Response from command MG len6 {S4}
Response from command MG len5 {S4}
Response from command MG len4 {S4}
Response from command MG len3 {S4}
Response from command MG len2 {S4}
Response from command MG lenl {S4}

DMC-2X00

Chapter 7 Application Programming e 129

Functions

FUNCTION DESCRIPTION

@SIN[n] Sine of n (n in degrees, resolution of 1/64000 degrees, max +/- 4 billion)
@COS|n] Cosine of n (n in degrees, resolution of 1/64000 degrees, max +/- 4 billion)
@TAN(n] Tangent of n (n in degrees, resolution of 1/64000 degrees, max +4 billion)
@ASIN*[n] Arc Sine of n, between -90° and +90°. Angle resolution in 1/64000 degrees.
@ACOS* [n} Arc Cosine of n, between 0 and 180°. Angle resolution in 1/64000 degrees.
@ATAN* [n] Arc Tangent of n, between -90° and +90°. Angle resolution in 1/64000 degrees
@COM|n] 1’s Complement of n

@ABS[n] Absolute value of n

@FRAC[n] Fraction portion of n

@INT[n] Integer portion of n

@RNDIn] Round of n (Rounds up if the fractional part of n is .5 or greater)

@SQR[n] Square root of n (Accuracy is +/-.0001)

@IN[n] Return digital input at general input n (where n starts at 1)

@OUT][n] Return digital output at general output n (where n starts at 1)

@AN[n] Return analog input at general analog in n (where n starts at 1)

* Note that these functions are multi-valued. An application program may be used to find the correct
band.

Functions may be combined with mathematical expressions. The order of execution of mathematical
expressions is from left to right and can be over-ridden by using parentheses.

Instruction
v1=@ABS[v7]
v2=5*@SIN[pos]

Interpretation

The variable, v1, is equal to the absolute value of variable v7.

The variable, v2, is equal to five times the sine of the variable,
pos.

v3=@IN[1] The variable, v3, is equal to the digital value of input 1.

v4=2*(5+@AN][5]) The variable, v4, is equal to the value of analog input 5 plus 5,

then multiplied by 2.

Variables

For applications that require a parameter that is variable, the DMC-2x00 provides 254 variables.

These variables can be numbers or strings. A program can be written in which certain parameters,
such as position or speed, are defined as variables. The variables can later be assigned by the operator
or determined by program calculations. For example, a cut-to-length application may require that a cut
length be variable.

Instruction Interpretation
PR posa Assigns variable posa to PR command
JG rpmb*70 Assigns variable rpmb multiplied by 70 to JG command.

130 o Chapter 7 Application Programming DMC-2X00

Programmable Variables

The DMC-2x00 allows the user to create up to 254 variables. Each variable is defines by a name
which can be up to eight characters. The name must start with an alphabetic character; however,
numbers are permitted in the rest of the name. Spaces are not permitted. Variable can be upper or
lowercase, or any combination. Variables are case sensitive; SPEEDC # speedC. Variable names
should not be the same as DMC-2x00 instructions. For example, PR is not a good choice for a variable
name.

Examples of valid and invalid variable names are:
Valid Variable Names
POSA
posl
speedC
Invalid Variable Names
REALLONGNAME ; Cannot have more than 8 characters
123 ; Cannot begin variable name with a number

SPEED C ; Cannot have spaces in the name

Assigning Values to Variables

Assigned values can be numbers, internal variables and keywords, functions, controller parameters and
strings;

The range for numeric variable values is 4 bytes of integer (2*") followed by two bytes of fraction
(+/-2,147,483,647.9999).
Numeric values can be assigned to programmable variables using the equal sign.

Any valid DMC-2x00 function can be used to assign a value to a variable. For example,
v1=@ABS[v2] or v2=@IN][1]. Arithmetic operations are also permitted.

To assign a string value, the string must be in quotations. String variables can contain up to six
characters which must be in quotation.

Instruction Interpretation

posA= TPA Assigns returned value from TPA command to variable posA
SPEED=5.75 Assigns value 5.75 to variable SPEED

input=@IN[2] Assigns logical value of input 2 to variable input
v2=vl+v3*v4 Assigns the value of v1 plus v3 times v4 to the variable v2.
Var="CAT" Assign the string, CAT, to Var

Assigning Variable Values to Controller Parameters
Variable values may be assigned to controller parameters such as GN or PR.
PR vl Assign vl to PR command
SP _VSS*2000 Assign _VSS*2000 to SP command

DMC-2X00 Chapter 7 Application Programming ¢ 131

Displaying the value of variables at the terminal

Variables may be sent to the screen using the format, variable=. For example, v1= returns the value of
the variable v1.

Example - Using Variables for Joystick

The example below reads the voltage of an A-B joystick and assigns it to variables VA and VB to
drive the motors at proportional velocities, where

10 volts = 3000 rpm = 200000 c/sec
Speed/Analog input = 200000/10 = 20000

Instruction Interpretation
#JOYSTIK Label

JG 0,0 Set in Jog mode
BGAB Begin Motion
#LOOP Loop
va=@AN][1]*20000 Read joystick A
vb=@AN[2]*20000 Read joystick B

JG va,vb Jog at variable va,vb
JP#LOOP Repeat

EN End

Operands

Operands allow motion or status parameters of the DMC-2x00 to be incorporated into programmable
variables and expressions. Most DMC-2x00 commands have an equivalent operand - which are
designated by adding an underscore (_) prior to the DMC-2x00 command. The command reference
indicates which commands have an associated operand.

Status commands such as Tell Position return actual values, whereas action commands such as KP or
SP return the values in the DMC-2x00 registers. The axis designation is required following the

command.
Instruction Interpretation
posA= TPA Assigns value from Tell Position A to the variable posA.
JP #LOOP,_TEA>S Jump to #LOOP if the position error of A is greater than 5
JP #ERROR,_TC=1 Jump to #ERROR if the error code equals 1.

Operands can be used in an expression and assigned to a programmable variable, but they cannot be
assigned a value. For example: TPA=2 is invalid.

Special Operands (Keywords)

The DMC-2x00 provides a few additional operands which give access to internal variables that are not
accessible by standard DMC-2x00 commands.

Keyword Function
BGn *Returns a 1 if motion on axis ‘n’ is complete. otherwise returns 0.
BN *Returns serial # of the board.
DA *Returns the number of arrays available
DL *Returns the number of available labels for programming
DM *Returns the available array memory
HMn *Returns status of Home Switch (equals 0 or 1)
LFn Returns status of Forward Limit switch input of axis ‘n’ (equals 0 or 1)

132 o Chapter 7 Application Programming DMC-2X00

_LRn Returns status of Reverse Limit switch input of axis ‘n’ (equals 0 or 1)

UL *Returns the number of available variables
TIME Free-Running Real Time Clock (off by 2.4% - Resets with power-on).
NOTE: TIME does not use an underscore character (_) as other keywords.

* These keywords have corresponding commands while the keywords LF, LR, and TIME do not
have any associated commands. All keywords are listed in the Command Summary.

vl= LFA Assign vl the state of the Forward Limit Switch on the A-axis
v3=TIME Assign v3 the current value of the time clock
v4= HMD Assign v4 the logical state of the Home input on the D-axis

Arrays

For storing and collecting numerical data, the DMC-2x00 provides array space for 8000 elements.
The arrays are one dimensional and up to 30 different arrays may be defined. Each array element has a

numeric range of 4 bytes of integer (23 1) followed by two bytes of fraction (+/-2,147,483,647.9999).

Arrays can be used to capture real-time data, such as position, torque and analog input values. In the
contouring mode, arrays are convenient for holding the points of a position trajectory in a record and
playback application.

Defining Arrays

An array is defined with the command DM. The user must specify a name and the number of entries
to be held in the array. An array name can contain up to eight characters, starting with an uppercase
alphabetic character. The number of entries in the defined array is enclosed in [].

DM posA[7] Defines an array names posA with seven entries
DM speed[100] Defines an array named speed with 100 entries
DM posA[0] Frees array space

Assignment of Array Entries

Like variables, each array element can be assigned a value. Assigned values can be numbers or
returned values from instructions, functions and keywords.

Array elements are addressed starting at count 0. For example the first element in the posA array
(defined with the DM command, DM posA[7]) would be specified as posA[0].

Values are assigned to array entries using the equal sign. Assignments are made one element at a time
by specifying the element number with the associated array name.

NOTE: Arrays must be defined using the command, DM, before assigning entry values.

DM speed[10] Dimension Speed Array

speed[1]=7650.2 Assigns the first element of the array the value 7650.2
speed[1]= Returns array element value

posXA[10]= TPA Assigns the 10th element the position of A

DMC-2X00 Chapter 7 Application Programming ¢ 133

con[2]=@COS[POS]*2 Assigns the 2% element of the array the cosine of POS * 2.
timer[1]=TIME Assigns the 1% element of the array TIME

Using a Variable to Address Array Elements

An array element number can also be a variable. This allows array entries to be assigned sequentially
using a counter.

Instruction Interpretation

#A Begin Program

count=0;DM POS[10] Initialize counter and define array
#LOOP Begin loop

WT 10 Wait 10 msec

POS[count]= TPA Record position into array element
POS[count]= Report position

count = count +1 Increment counter

JP #LOOP, count <10 Loop until 10 elements have been stored
EN End Program

The above example records 10 position values at a rate of one value per 10 msec. The values are
stored in an array named POS. The variable, COUNT, is used to increment the array element counter.
The above example can also be executed with the automatic data capture feature described below.

Uploading and Downloading Arrays to On Board Memory
Arrays may be uploaded and downloaded using the QU and QD commands.
QU array[],start,end,delim
QD array[],start,end
where array is an array name such as A[].
Start is the first element of array (default=0)
End is the last element of array (default=last element)

Delim specifies whether the array data is separated by a comma (delim=1) or a carriage return
(delim=0).

The file is terminated using <control>Z, <control>Q, <control>D or \.

Automatic Data Capture into Arrays

The DMC-2x00 provides a special feature for automatic capture of data such as position, position
error, inputs or torque. This is useful for teaching motion trajectories or observing system
performance. Up to four types of data can be captured and stored in four arrays. The capture rate or
time interval may be specified. Recording can be done as a one time event or as a circular continuous
recording.

134 o Chapter 7 Application Programming DMC-2X00

Command Summary - Automatic Data Capture

command

description

RA n[],m[],0[],p[]

Selects up to four arrays for data capture. The arrays must be defined with the
DM command.

RD typel,type2,type3,typed

Selects the type of data to be recorded, where typel, type2, type3, and type 4
represent the various types of data (see table below). The order of data type is
important and corresponds with the order of n,m,o,p arrays in the RA command.

RC nm

The RC command begins data collection. Sets data capture time interval where
n is an integer between 1 and 8 and designates 2" msec between data. m is
optional and specifies the number of elements to be captured. If m is not
defined, the number of elements defaults to the smallest array defined by DM.
When m is a negative number, the recording is done continuously in a circular
manner. _RD is the recording pointer and indicates the address of the next array
element. n=0 stops recording.

RC?

Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in progress

Data Types for Recording:

data type description

_DEA 2nd encoder position (dual encoder)
_TPA Encoder position

_TEA Position error

_SHA Commanded position

_RLA Latched position

_TI Inputs

_Oop Output

_TSA Switches (only bit 0-4 valid)

_SCA Stop code

~_NOA Status bits

_TTA Torque (reports digital value +/-32544)
_AFA Analog Input (Letter corresponds to input, e.g. AFA = 1% Analog In, AFB=2"

Analog In.)

NOTE: A may be replaced by B,C,D,E,F,G, or H for capturing data on other axes.

Operand Summary - Automatic Data Capture

“RC

Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in progress

RD

Returns address of next array element.

Example - Recording into an Array

Instruction Interpretation
#RECORD Begin program

DM apos[300],bpos[300] Define A,B position arrays
DM aerr[300],berr[300] Define A,B error arrays
RA apos [],aerr[],bpos[],berr]] Select arrays for capture
RD TPA, TEA, TPB, TEB Select data types

DMC-2X00

Chapter 7 Application Programming e 135

PR 10000,20000 Specify move distance

RC1 Start recording now, at rate of 2 msec
BG AB Begin motion
#A;JP #A, RC=1 Loop until done
MG "DONE" Print message

EN End program
#PLAY Play back

n=0 Initial Counter
JP# DONE,N>300 Exit if done

n= Print Counter

apos [n]= Print X position
bpos [n]= Print Y position
aerr[n]= Print X error
berr[n]= Print Y error
n=n+1 Increment Counter
#DONE Done

EN End Program

Deallocating Array Space

Array space may be deallocated using the DA command followed by the array name. DA*[0]
deallocates all the arrays.

Input of Data (Numeric and String)

Input of Data

The command, IN, is used to prompt the user to input numeric or string data. Using the IN command,
the user may specify a message prompt by placing a message in quotations. When the controller
executes an IN command, the controller will wait for the input of data. The input data is assigned to
the specified variable or array element.

Example- Inputting Numeric Data
#A
IN "Enter Length",lenA
EN

In this example, the message “Enter Length” is displayed on the computer screen. The controller waits
for the operator to enter a value. The operator enters the numeric value which is assigned to the
variable, lenA. (NOTE: Do not include a space between the comma at the end of the input message
and the variable name.)

Example- Cut-to-Length

In this example, a length of material is to be advanced a specified distance. When the motion is
complete, a cutting head is activated to cut the material. The length is variable, and the operator is
prompted to input it in inches. Motion starts with a start button which is connected to input 1.

136 ¢ Chapter 7 Application Programming DMC-2X00

The load is coupled with a 2 pitch lead screw. A 2000 count/rev encoder is on the motor, resulting in a
resolution of 4000 counts/inch. The program below uses the variable len, to length. The IN command
is used to prompt the operator to enter the length, and the entered value is assigned to the variable

LEN.

Instruction
#BEGIN

AC 800000
DC 800000

SP 5000
len=3.4

#CUT

All

IN "enter Length(IN)", len
PR LEN *4000
BGA

AMA

SB1
WT100;CBl1
JP #CUT

Interpretation

LABEL

Acceleration

Deceleration

Speed

Initial length in inches

Cut routine

Wait for start signal

Prompt operator for length in inches
Specify position in counts
Begin motion to move material
Wait for motion done

Set output to cut

Wait 100 msec, then turn off cutter

EN

Repeat process

End program

Operator Data Entry Mode

The Operator Data Entry Mode provides for un-buffered data entry through the auxiliary RS-232 port.
In this mode, the DMC-2x00 provides a buffer for receiving characters. This mode may only be used
when executing an applications program.

The Operator Data Entry Mode may be specified for Port 2 only. This mode may be exited with the \

or <escape> key.

NOTE: Operator Data Entry Mode cannot be used for high rate data transfer.

Set the third field of the CC command to zero to set the Operator Data Entry Mode.

To capture and decode characters in the Operator Data Mode, the DMC-2x00 provides special the

following keywords:

Keyword

Function

P2CH

Contains the last character received

P2ST

Contains the received string

P2NM

Contains the received number

P2CD

Contains the status code:

-1 mode disabled

0 nothing received

1 received character, but not <enter>
2 received string, not a number

3 received number

NOTE: The value of P2CD returns to zero after the corresponding string or number is read.

DMC-2X00

Chapter 7 Application Programming e 137

These keywords may be used in an applications program to decode data and they may also be used in
conditional statements with logical operators.

Example
Instruction Interpretation
JP #LOOP,P2CD< >3 Checks to see if status code is 3 (number received)
JP #P,P1CH="V" Checks if last character received was a V
PR P2NM Assigns received number to position
JS #XAXIS,P1ST="X" Checks to see if received string is X

Using Communication Interrupt

The DMC-2x00 provides a special interrupt for communication allowing the application program to be
interrupted by input from the user. The interrupt is enabled using the CI command. The syntax for the
command is CI n:

n=0 Don't interrupt Port 2

n=1 Interrupt on <enter> Port 2

n=2 Interrupt on any character Port 2
=-1 Clear any characters in buffer

The #COMINT label is used for the communication interrupt. For example, the DMC-2x00 can be
configured to interrupt on any character received on Port 2. The #COMINT subroutine is entered
when a character is received and the subroutine can decode the characters. At the end of the routine
the EN command is used. EN,1 will re-enable the interrupt and return to the line of the program where
the interrupt was called, EN will just return to the line of the program where it was called without re-
enabling the interrupt. As with any automatic subroutine, a program must be running in thread 0 at all
times for it to be enabled.

Example

A DMC-2x00 is used to jog the A and B axis. This program automatically begins upon power-up and
allows the user to input values from the main serial port terminal. The speed of either axis may be
changed during motion by specifying the axis letter followed by the new speed value. An S stops
motion on both axes.

Instruction Interpretation
#AUTO Label for Auto Execute
speedA=10000 Initial A speed
speedB=10000 Initial B speed
CI2 Set Port 2 for Character Interrupt
JG speedA, speedB Specify jog mode speed for A and B axis
BGXY Begin motion
#PRINT Routine to print message to terminal
MG{P2}"TO CHANGE SPEEDS" Print message

MG{P2}"TYPE A OR B"
MG{P2}"TYPE S TO STOP"

#JOGLOOP Loop to change Jog speeds
JG speedA, speedB Set new jog speed

JP #JOGLOOP

EN End of main program

138 o Chapter 7 Application Programming DMC-2X00

#COMINT

JP #A,P2CH="A"

JP #B,P2CH="B"

JP #C,P2CH="S"
ZS1;CI2;JP#JOGLOOP
#AJSHENUM
speedX=val
ZS1;CI2;JP#PRINT
#B:JSHNUM
speedY=val
ZS1;CI2;JP#PRINT
#C;ST;AMX;CI-1
MG{"8}, "THE END"
ZS:EN,1

#NUM

MG "ENTER",P2CH{S},"AXIS SPEED"
{N}

#NUMLOOP; CI-1
#NMLP

JP #NMLP,P2CD<2

JP #ERROR,P2CD=2
val=P2NM

EN

#ERROR;CI-1

MG "INVALID-TRY AGAIN"
JP #NMLP

EN

Inputting String Variables

Interrupt routine
Check for A
Check for B
Check for S

Jump if not X,Y,S

New X speed

Jump to Print

New Y speed
Jump to Print

Stop motion on S

End-Re-enable interrupt
Routine for entering new jog speed

Prompt for value

Check for enter
Routine to check input from terminal
Jump to error if string

Read value
End subroutine
Error Routine

Error message

End

String variables with up to six characters may be input using the specifier, {Sn} where n represents the
number of string characters to be input. If n is not specified, six characters will be accepted. For
example, IN "Enter A,B or C", V{S} specifies a string variable to be input.

The DMC-2x00, stores all variables as 6 bytes of information. When a variable is specified as a
number, the value of the variable is represented as 4 bytes of integer and 2 bytes of fraction. When a
variable is specified as a string, the variable can hold up to 6 characters (each ASCII character is 1
byte). When using the IN command for string input, the first input character will be placed in the top
byte of the variable and the last character will be placed in the lowest significant byte of the fraction.
The characters can be individually separated by using bit-wise operations, see section Bit-wise

Operators.

Output of Data (Numeric and String)

Numerical and string data can be output from the controller using several methods. The message
command, MG, can output string and numerical data. Also, the controller can be commanded to return
the values of variables and arrays, as well as other information using the interrogation commands (the

interrogation commands are described in chapter 5).

DMC-2X00

Chapter 7 Application Programming ¢ 139

Sending Messages

Messages may be sent to the bus using the message command, MG. This command sends specified
text and numerical or string data from variables or arrays to the screen.

Text strings are specified in quotes and variable or array data is designated by the name of the variable
or array. For example:

MG "The Final Value is", result

In addition to variables, functions and commands, responses can be used in the message command.
For example:

MG "Analog input is", @AN[1]
MG "The Position of A is", TPA

Specifying the Port for Messages:

By default, messages will be sent through the port specified by the USB/Ethernet Dip Switch - the state
of this switch upon power up will determine if messages will be sent to USB port (DMC-2000), or
Ethernet (DMC-2100/2200) the Main Serial Port. However, the port can be specified with the
specifier, {P1} for the main serial port {P2} for auxiliary serial port, {U} for the USB port, or {E} for
the Ethernet port.

MG {P2} "Hello World" Sends message to Auxiliary Port

Formatting Messages

String variables can be formatted using the specifier, {Sn} where n is the number of characters, 1 thru
6. For example:

MG STR {S3}
This statement returns 3 characters of the string variable named STR.

Numeric data may be formatted using the {Fn.m} expression following the completed MG statement.
{$n.m} formats data in HEX instead of decimal. The actual numerical value will be formatted with n
characters to the left of the decimal and m characters to the right of the decimal. Leading zeros will be
used to display specified format.

For example:
MG "The Final Value is", result {F5.2}

If the value of the variable result is equal to 4.1, this statement returns the following:
The Final Value is 00004.10

If the value of the variable result is equal to 999999.999, the above message statement returns the
following:

The Final Value is 99999.99

The message command normally sends a carriage return and line feed following the statement. The
carriage return and the line feed may be suppressed by sending {N} at the end of the statement. This is
useful when a text string needs to surround a numeric value.

Example:
#A
JG 50000;BGA;ASA
MG "The Speed is", TVA {F5.1} {N}

MG "counts/sec"

140 o Chapter 7 Application Programming DMC-2X00

EN
When #A is executed, the above example will appear on the screen as:

The speed is 50000 counts/sec

Using the MG Command to Configure Terminals

The MG command can be used to configure a terminal. Any ASCII character can be sent by using the
format {"n} where n is any integer between 1 and 255.

Example:
MG {"07} {*255}
sends the ASCII characters represented by 7 and 255 to the bus.

Summary of Message Functions

function description

" Surrounds text string

{Fn.m} Formats numeric values in decimal n digits to the left of the decimal point and
m digits to the right

{P1}, {P2}, {U} or {E} Send message to Main Serial Port, Auxiliary Serial Port, USB Port or Ethernet

Port
{$n.m} Formats numeric values in hexadecimal
{"n} Sends ASCII character specified by integer n
{N} Suppresses carriage return/line feed
{Sn} Sends the first n characters of a string variable, where n is 1 thru 6.

Displaying Variables and Arrays

Variables and arrays may be sent to the screen using the format, variable= or array[x]=. For example,
v1=returns the value of v1.

Example - Printing a Variable and an Array element

Instruction Interpretation

#DISPLAY Label

DM posA[7] Define Array POSA with 7 entries
PR 1000 Position Command

BGX Begin

AMX After Motion

vl= TPA Assign Variable vl

posA[l]= TPA Assign the first entry

vl= Print v1

Interrogation Commands

The DMC-2x00 has a set of commands that directly interrogate the controller. When these command
are entered, the requested data is returned in decimal format on the next line followed by a carriage

return and line feed. The format of the returned data can be changed using the Position Format (PF),
and Leading Zeros (LZ) command. For a complete description of interrogation commands, see Ch 5.

DMC-2X00

Chapter 7 Application Programming e 141

Using the PF Command to Format Response from Interrogation

Commands
The command, PF, can change format of the values returned by theses interrogation commands:
BL? LE?
DE ? PA?
DP? PR ?
EM ? TN ?
FL? VE?
IP? TE
TP

The numeric values may be formatted in decimal or hexadecimal with a specified number of digits to
the right and left of the decimal point using the PF command.

Position Format is specified by:
PF mn

where m is the number of digits to the left of the decimal point (0 thru 10) and n is the number of digits
to the right of the decimal point (0 thru 4) A negative sign for m specifies hexadecimal format.

Hex values are returned preceded by a $ and in 2's complement. Hex values should be input as signed
2's complement, where negative numbers have a negative sign. The default format is PF 10.0.

If the number of decimal places specified by PF is less than the actual value, a nine appears in all the
decimal places.

Example
Instruction Interpretation
:DP21 Define position
:TPA Tell position
0000000021 Default format
:PF4 Change format to 4 places
‘TPA Tell position
0021 New format
:PF-4 Change to hexadecimal format
‘TPA Tell Position
$0015 Hexadecimal value
:PF2 Format 2 places
‘TPA Tell Position
99 Returns 99 if position greater than 99

Removing Leading Zeros from Response to Interrogation Commands

The leading zeros on data returned as a response to interrogation commands can be removed by the use
of the command, LZ.

LZ0 Disables the LZ function
TP Tell Position Interrogation Command
-0000000009, 0000000005 Response (With Leading Zeros)

142 o Chapter 7 Application Programming DMC-2X00

Lz1
TP
9,5

Enables the LZ function
Tell Position Interrogation Command

Response (Without Leading Zeros)

Local Formatting of Response of Interrogation Commands

The response of interrogation commands may be formatted locally. To format locally, use the
command, {Fn.m} or {$n.m} on the same line as the interrogation command. The symbol F specifies
that the response should be returned in decimal format and $ specifies hexadecimal. n is the number of
digits to the left of the decimal, and m is the number of digits to the right of the decimal.

TP {F2.2}

-05.00, 05.00, 00.00, 07.00

TP {$4.2}
FFFB.00,$0005.00,$0000.00,$0007.00

Tell Position in decimal format 2.2
Response from Interrogation Command
Tell Position in hexadecimal format 4.2

Response from Interrogation Command

Formatting Variables and Array Elements

The Variable Format (VF) command is used to format variables and array elements. The VF

command is specified by:

VF m.n

where m is the number of digits to the left of the decimal point (0 thru 10) and n is the number of

digits to the right of the decimal point (0 thru 4).

A negative sign for m specifies hexadecimal format. The default format for VF is VF 10.4

Hex values are returned preceded by a $ and in 2's complement.

Instruction
v1=10
vl=
:0000000010.0000
VF2.2
vl=
:10.00
vF-2.2
vl=
$0A.00
VF1
vl=
9

Local Formatting of Variables

Interpretation
Assign vl

Return v1

Response - Default format
Change format

Return v1

Response - New format
Specify hex format
Return v1

Response - Hex value
Change format

Return v1

Response - Overflow

PF and VF commands are global format commands that affect the format of all relevant returned
values and variables. Variables may also be formatted locally. To format locally, use the command,
{Fn.m} or {$n.m} following the variable name and the ‘=" symbol. F specifies decimal and $ specifies
hexadecimal. n is the number of digits to the left of the decimal, and m is the number of digits to the

right of the decimal.

DMC-2X00

Chapter 7 Application Programming e 143

Instruction Interpretation

v1=10 Assign vl
vl= Return v1
:0000000010.0000 Default Format
v1={F4.2} Specify local format
:0010.00 New format
v1={$4.2} Specify hex format
:$000A.00 Hex value
vl="ALPHA" Assign string "ALPHA" to v1
v1={S4} Specify string format first 4 characters
:ALPH

The local format is also used with the MG command.

Converting to User Units

Variables and arithmetic operations make it easy to input data in desired user units such as inches or
RPM.

The DMC-2x00 position parameters such as PR, PA and VP have units of quadrature counts. Speed
parameters such as SP, JG and VS have units of counts/sec. Acceleration parameters such as AC, DC,
VA and VD have units of counts/sec2. The controller interprets time in milliseconds.

All input parameters must be converted into these units. For example, an operator can be prompted to

input a number in revolutions. A program could be used such that the input number is converted into
counts by multiplying it by the number of counts/revolution.

Instruction Interpretation
#RUN Label

IN "ENTER # OF REVOLUTIONS",nl Prompt for revs

PR n1*2000 Convert to counts

IN "ENTER SPEED IN RPM",s1 Prompt for RPMs

SP s1¥2000/60 Convert to counts/sec
IN "ENTER ACCEL IN RAD/SEC2",al Prompt for ACCEL
AC al*2000/(2*3.14) Convert to counts/sec2
BG Begin motion

EN End program

Hardware 1/O

Digital Outputs

The DMC-2x00 has an 8-bit uncommitted output port and an additional 64 I/O which may be
configured as inputs or outputs with the CO command for controlling external events. The DMC-
2x50 through DMC-2x80 has an additional 8 outputs. Each bit on the output port may be set and
cleared with the software instructions SB (Set Bit) and CB (Clear Bit), or OB (define output bit).

144 o Chapter 7 Application Programming DMC-2X00

Example- Set Bit and Clear Bit

Instruction Interpretation
SB6 Sets bit 6 of output port
CB4 Clears bit 4 of output port

Example- Output Bit

The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a
variable, array, input or expression. Any non-zero value results in a set bit.

Instruction Interpretation

OBI, POS Set Output 1 if the variable POS is non-zero. Clear Output 1 if
POS equals 0.

OB 2, @IN [1] Set Output 2 if Input 1 is high. If Input 1 is low, clear Output 2.

OB 3, @IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high.

OB 4, COUNT [1] Set Output 4 if element 1 in the array COUNT is non-zero.

The output port can be set by specifying an 8-bit word using the instruction OP (Output Port). This
instruction allows a single command to define the state of the entire 8-bit output port, where 20 s
output 1, 2lis output 2 and so on. A 1 designates that the output is on.

Example- Output Port

Instruction Interpretation

OP6 Sets outputs 2 and 3 of output port to high. All other bits are 0. (21 +22=
6)

OPO Clears all bits of output port to zero

OP 255 Sets all bits of output port to one.

2 +21 422423424425 +26427)

The output port is useful for setting relays or controlling external switches and events during a motion
sequence.

Example - Turn on output after move

Instruction Interpretation
#OUTPUT Label

PR 2000 Position Command
BG Begin

AM After move

SB1 Set Output 1

WT 1000 Wait 1000 msec
CB1 Clear Output 1

EN End

Digital Inputs

The general digital inputs for are accessed by using the @IN[n] function or the TI command. The
@IN[n] function returns the logic level of the specified input, n, where n is a number 1 through 96..

DMC-2X00

Chapter 7 Application Programming e 145

Example - Using Inputs to control program flow

Instruction Interpretation

JP #A,@IN[1]=0 Jump to A if input 1 is low
JP #B,@IN[2]=1 Jump to B if input 2 is high
Al7 Wait until input 7 is high
Al -6 Wait until input 6 is low

Example - Start Motion on Switch

Motor A must turn at 4000 counts/sec when the user flips a panel switch to on. When panel switch is
turned to off position, motor A must stop turning.

Solution: Connect panel switch to input 1 of DMC-2x00. High on input 1 means switch is in on

position.
Instruction Interpretation
#S;JG 4000 Set speed
Al 1;BGA Begin after input 1 goes high
Al -1;STA Stop after input 1 goes low
AMAIP #S After motion, repeat
EN;

The Auxiliary Encoder Inputs

The auxiliary encoder inputs can be used for general use. For each axis, the controller has one
auxiliary encoder and each auxiliary encoder consists of two inputs, channel A and channel B. The
auxiliary encoder inputs are mapped to the inputs 81-96.

Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels
between +/- 12 volts. The inputs have been configured to accept TTL level signals. To connect TTL
signals, simply connect the signal to the + input and leave the - input disconnected. For other signal
levels, the - input should be connected to a voltage that is 'z of the full voltage range (for example,
connect the - input to 6 volts if the signal is a 0 - 12 volt logic).

Example:

A DMC-2x10 has one auxiliary encoder. This encoder has two inputs (channel A and channel B).
Channel A input is mapped to input 81 and Channel B input is mapped to input 82. To use this input
for 2 TTL signals, the first signal will be connected to AA+ and the second to AB+. AA- and AB-
will be left unconnected. To access this input, use the function @IN[81] and @IN[82].

NOTE: The auxiliary encoder inputs are not available for any axis that is configured for stepper
motor.

Input Interrupt Function

The DMC-2x00 provides an input interrupt function which causes the program to automatically
execute the instructions following the #ININT label. This function is enabled using the II m,n,o
command. The m specifies the beginning input and n specifies the final input in the range. The
parameter o is an interrupt mask. If m and n are unused, o contains a number with the mask. A 1
designates that input to be enabled for an interrupt, where 2° is bit 1, 2" is bit 2 and so on. For
example, I1,,5 enables inputs 1 and 3 (2° + 2% = 5).

A low input on any of the specified inputs will cause automatic execution of the #ININT subroutine.
The Return from Interrupt (RI) command is used to return from this subroutine to the place in the
program where the interrupt had occurred. If it is desired to return to somewhere else in the program

146 o Chapter 7 Application Programming DMC-2X00

after the execution of the #ININT subroutine, the Zero Stack (ZS) command is used followed by
unconditional jump statements.

Important: Use the Rl command (not EN) to return from the #ININT subroutine.

Example - Input Interrupt

Instruction Interpretation

#A Label #A

1 Enable input 1 for interrupt function
JG 30000,-20000 Set speeds on A and B axes

BG AB Begin motion on A and B axes
#B Label #B

TP AB Report A and B axes positions
WT 1000 Wait 1000 milliseconds

JP #B Jump to #B

EN End of program

#ININT Interrupt subroutine

MG "Interrupt has occurred" Displays the message

ST AB Stops motion on A and B axes
#LOOP;JP #LOOP,@IN[1]=0 Loop until Interrupt cleared

JG 15000,10000 Specify new speeds

WT 300 Wait 300 milliseconds

BG AB Begin motion on A and B axes
RI Return from Interrupt subroutine

Analog Inputs

The DMC-2x00 provides eight analog inputs. The value of these inputs in volts may be read using the
@AN[n] function where n is the analog input 1 through 8. The resolution of the Analog-to-Digital
conversion is 12 bits (16-bit ADC is available as an option). Analog inputs are useful for reading
special sensors such as temperature, tension or pressure.

The following examples show programs which cause the motor to follow an analog signal. The first
example is a point-to-point move. The second example shows a continuous move.

Example - Position Follower (Point-to-Point)

Objective - The motor must follow an analog signal. When the analog signal varies by 10V, motor
must move 10000 counts.

Method: Read the analog input and command A to move to that point.

Instruction Interpretation

#POINTS Label

SP 7000 Speed

AC 80000;DC 80000 Acceleration

#LOOP

VP=@AN[1]*1000 Read and analog input, compute position

DMC-2X00

Chapter 7 Application Programming e 147

PA VP Command position

BGA Start motion
AMA After completion
JP #LOOP Repeat

EN End

Example - Position Follower (Continuous Move)

Method: Read the analog input, compute the commanded position and the position error. Command
the motor to run at a speed in proportions to the position error.

Instruction Interpretation
#CONT Label

AC 80000;DC 80000 Acceleration rate
JGO Start job mode
BGX Start motion
#LOOP

vp=@AN[1]*1000 Compute desired position
ve=vp-_TPA Find position error
vel=ve*20 Compute velocity
JG vel Change velocity
JP #LOOP Change velocity
EN End

Extended I/0 of the DMC-2x00 Controller

The DMC-2x00 controller offers 64 extended I/O points which can be configured as inputs or outputs
in 8 bit increments through software. The I/O points are accessed through 1 80 pin high density
connector.

Configuring the 1/0O of the DMC-2x00

The 64 extended 1/O points of the DMC-2x00 series controller can be configured in blocks of 8. The
extended 1/O is denoted as blocks 2-9 or bits 17-80.

The command, CO, is used to configure the extended I/O as inputs or outputs. The CO command has
one field:

COn

where n is a decimal value which represents a binary number. Each bit of the binary number
represents one block of extended I/0. When set to 1, the corresponding block is configured as an
output.

The least significant bit represents block 2 and the most significant bit represents block 9. The decimal
value can be calculated by the following formula. n=n; + 2*n; + 4*n, + 8*ns +16* ng +32* n; +64*
ng +128* ny where n, represents the block. If the n, value is a one, then the block of 8 I/O points is to
be configured as an output. If the n, value is a zero, then the block of 8 I/O points will be configured
as an input. For example, if block 4 and 5 is to be configured as an output, CO 12 is issued.

148 o Chapter 7 Application Programming DMC-2X00

8-Bit I/0 Block Block Binary Decimal Value for
Representation Block

17-24) 2° 1

25-32 3 211 2

33-40 4 22 4

41-48 5 23 8

49-56 6 24 16

57-64 7 2’ 32

65-72 8 26 64

73-80 9 2’ 128

The simplest method for determining n:
Step 1. Determine which 8-bit I/O blocks to be configured as outputs.
Step 2. From the table, determine the decimal value for each I/O block to be set as an output.
Step 3. Add up all of the values determined in step 2. This is the value to be used for n.

For example, if blocks 2 and 3 are to be outputs, then n is 3 and the command, CO3, should be issued.
NOTE: This calculation is identical to the formula: n = n, + 2*n3 + 4*n4 + 8*ns +16* ng +32* n, +64*
ng +128* ny where n, represents the block.

Saving the State of the Outputs in Non-Volatile Memory

The configuration of the extended I/O and the state of the outputs can be stored in the EEPROM with
the BN command. If no value has been set, the default of CO 0 is used (all blocks are inputs).

Accessing Extended 1/0

When configured as an output, each I/O point may be defined with the SBn and CBn commands
(where n=1 through 8 and 17 through 80). Outputs may also be defined with the conditional
command, OBn (where n=1 through 8 and 17 through 80).

The command, OP, may also be used to set output bits, specified as blocks of data. The OP command
accepts 5 parameters. The first parameter sets the values of the main output port of the controller
(Outputs 1-8, block 0). The additional parameters set the value of the extended I/O as outlined:

OP m,a,b,c,d

where m is the decimal representation of the bits 1-8 (values from 0 to 255) and a,b,c,d represent the
extended I/O in consecutive groups of 16 bits (values from 0 to 65535). Arguments which are given for
I/0O points which are configured as inputs will be ignored. The following table describes the arguments
used to set the state of outputs.

Argument Blocks Bits Description
m 0 1-8 General Outputs
a 2,3 17-32 Extended 1/0

b 4,5 33-48 Extended I/O

c 6,7 49-64 Extended 1/0

d 8,9 65-80 Extended 1/0

DMC-2X00 Chapter 7 Application Programming e 149

For example, if block 8 is configured as an output, the following command may be issued:
OP 739397

This command will set bits 1,2,3 (block 0) and bits 65,66,67 (block 8) to 1. Bits 4 through 8 and bits
68 through 80 will be set to 0. All other bits are unaffected.

When accessing I/O blocks configured as inputs, use the TIn command. The argument 'n' refers to the
block to be read (n=0,2,3,4,5,6,7,8 or 9). The value returned will be a decimal representation of the
corresponding bits.

Individual bits can be queried using the @IN[n] function (where n=1 through 8 or 17 through 80). If
the following command is issued;

MG @IN[17]

the controller will return the state of the least significant bit of block 2 (assuming block 2 is configured
as an input).

Interfacing to Grayhill or OPTO-22 G4PB24

The DMC-2x00 controller uses one 80 Pin high density connector which requires connection to a 80
pin high density cable (Galil CABLE-80). This cable can be converted to 2 50 pin IDC connectors
which are compatible with /O mounting racks such as Grayhill 70GRCM32-HL and OPTO-22
G4PB24. To convert the 80 pin cable, use the CB-50-80 adapter from Galil. The 50 pin ribbon cables
which connect to the CB-50-80 connect directly into the I/O mounting racks.

When using the OPTO-22 G4PB24 1/0 mounting rack, the user will only have access to 48 of the 64
I/0O points available on the controller. Block 5 and Block 9 must be configured as inputs and will be
grounded by the 1/O rack.

Example Applications

Wire Cutter

An operator activates a start switch. This causes a motor to advance the wire a distance of 10". When
the motion stops, the controller generates an output signal which activates the cutter. Allowing 100 ms
for the cutting completes the cycle.

Suppose that the motor drives the wire by a roller with a 2" diameter. Also assume that the encoder
resolution is 1000 lines per revolution. Since the circumference of the roller equals 27 inches, and it
corresponds to 4000 quadrature, one inch of travel equals:

4000/21t = 637 count/inch

This implies that a distance of 10 inches equals 6370 counts, and a slew speed of 5 inches per second,
for example, equals 3185 count/sec.

The input signal may be applied to I1, for example, and the output signal is chosen as output 1. The
motor velocity profile and the related input and output signals are shown in Fig. 7.1.

The program starts at a state that we define as #A. Here the controller waits for the input pulse on I1.
As soon as the pulse is given, the controller starts the forward motion.

Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an
additional 80 ms before returning to #A for a new cycle.

150 o Chapter 7 Application Programming DMC-2X00

Instruction Interpretation
#A Label

All Wait for input 1
PR 6370 Distance

SP 3185 Speed

BGA Start Motion
AMA After motion is complete
SB1 Set output bit 1
WT 20 Wait 20 ms

CB1 Clear output bit 1
WT 80 Wait 80 ms

JP #A Repeat the process

START PULSE 11

[] []

MOTOR VELOCITY

OUTPUT PULSE

-

output

TIME INTERVALS l

| move | | wait | ready | move

Figure 7.1 - Motor Velocity and the Associated Input/Output signals

A-B Table Controller

An A-B-C system must cut the pattern shown in Fig. 7.2. The A-B table moves the plate while the C-
axis raises and lowers the cutting tool.

The solid curves in Fig. 7.2 indicate sections where cutting takes place. Those must be performed at a
feed rate of 1 inch per second. The dashed line corresponds to non-cutting moves and should be
performed at 5 inch per second. The acceleration rate is 0.1 g.

The motion starts at point A, with the C-axis raised. An A-B motion to point B is followed by
lowering the C-axis and performing a cut along the circle. Once the circular motion is completed, the
C-axis is raised and the motion continues to point C, etc.

Assume that all of the 3 axes are driven by lead screws with 10 turns-per-inch pitch. Also assume
encoder resolution of 1000 lines per revolution. This results in the relationship:

DMC-2X00

Chapter 7 Application Programming e 151

1 inch = 40,000 counts

and the speeds of
1 in/sec = 40,000 count/sec
5 in/sec = 200,000 count/sec

an acceleration rate of 0.1g equals

0.1g = 38.6 in/s2 = 1,544,000 count/s2

Note that the circular path has a radius of 2" or 80000 counts, and the motion starts at the angle of 270°
and traverses 360° in the CW (negative direction). Such a path is specified with the instruction

CR 80000,270,-360

Further assume that the C must move 2" at a linear speed of 2" per second. The required motion is
performed by the following instructions:

Instruction Interpretation

#A Label

VM AB Circular interpolation for AB
VP 160000,160000 Positions

VE End Vector Motion
VS 200000 Vector Speed

VA 1544000 Vector Acceleration
BGS Start Motion

AMS When motion is complete
PR,,-80000 Move C down
SP,,80000 C speed

BGC Start C motion

AMC Wait for completion of C motion
CR 80000,270,-360 Circle

VE

VS 40000 Feed rate

BGS Start circular move
AMS Wait for completion
PR,,80000 Move C up

BGC Start C move

AMC Wait for C completion
PR -21600 Move A

SP 20000 Speed A

BGA Start A

AMA Wait for A completion
PR,,-80000 Lower C

BGC

AMC

CR 80000,270,-360 C second circle move
VE

VS 40000

BGS

AMS

152 e Chapter 7 Application Programming

DMC-2X00

PR,,80000 Raise C

BGC
AMC
VP -37600,-16000 Return AB to start
VE
VS 200000
BGS
AMS
EN
B
R=2
) A L
B e
A
0 4 9.3 A
Figure 7.2 - Motor Velocity and the Associated Input/Output signals
Speed Control by Joystick
The speed of a motor is controlled by a joystick. The joystick produces a signal in the range between -
10V and +10V. The objective is to drive the motor at a speed proportional to the input voltage.
Assume that a full voltage of 10 volts must produce a motor speed of 3000 rpm with an encoder
resolution of 1000 lines or 4000 count/rev. This speed equals:
3000 rpm = 50 rev/sec = 200000 count/sec
The program reads the input voltage periodically and assigns its value to the variable vin. To get a
speed of 200,000 ct/sec for 10 volts, we select the speed as
DMC-2X00 Chapter 7 Application Programming e 153

Speed = 20000 x vin

The corresponding velocity for the motor is assigned to the VEL variable.

Instruction
#A

JGO

BGA

#B
vin=@AN[1]
vel=vin*20000
JG vel

JP #B

EN

Position Control by Joystick

This system requires the position of the motor to be proportional to the joystick angle. Furthermore,
the ratio between the two positions must be programmable. For example, if the control ratio is 5:1, it
implies that when the joystick voltage is 5 volts, corresponding to 1024 counts, the required motor
position must be 5120 counts. The variable V3 changes the position ratio.

Instruction Interpretation

#A Label

v3=1024 Initial position ratio

DPO Define the starting position
JGO Set motor in jog mode as zero
BGA Start

#B

vI=@AN[1] Read analog input

v2=v1*v3 Compute the desired position
v4=v2-_TPA- TEA Find the following error
v5=v4*20 Compute a proportional speed
IG5 Change the speed

JP #B Repeat the process

EN End

Backlash Compensation by Sampled Dual-Loop

The continuous dual loop, enabled by the DV1 function is an effective way to compensate for
backlash. In some cases, however, when the backlash magnitude is large, it may be difficult to
stabilize the system. In those cases, it may be easier to use the sampled dual loop method described
below.

This design example addresses the basic problems of backlash in motion control systems. The
objective is to control the position of a linear slide precisely. The slide is to be controlled by a rotary
motor, which is coupled to the slide by a lead screw. Such a lead screw has a backlash of 4 micron,
and the required position accuracy is for 0.5 micron.

154 ¢ Chapter 7 Application Programming DMC-2X00

The basic dilemma is where to mount the sensor. If you use a rotary sensor, you get a 4 micron
backlash error. On the other hand, if you use a linear encoder, the backlash in the feedback loop will
cause oscillations due to instability.

An alternative approach is the dual-loop, where we use two sensors, rotary and linear. The rotary
sensor assures stability (because the position loop is closed before the backlash) whereas the linear
sensor provides accurate load position information. The operation principle is to drive the motor to a
given rotary position near the final point. Once there, the load position is read to find the position error
and the controller commands the motor to move to a new rotary position which eliminates the position
eITor.

Since the required accuracy is 0.5 micron, the resolution of the linear sensor should preferably be twice
finer. A linear sensor with a resolution of 0.25 micron allows a position error of +/-2 counts.

The dual-loop approach requires the resolution of the rotary sensor to be equal or better than that of the
linear system. Assuming that the pitch of the lead screw is 2.5mm (approximately 10 turns per inch), a
rotary encoder of 2500 lines per turn or 10,000 count per revolution results in a rotary resolution of
0.25 micron. This results in equal resolution on both linear and rotary sensors.

To illustrate the control method, assume that the rotary encoder is used as a feedback for the X-axis,
and that the linear sensor is read and stored in the variable LINPOS. Further assume that at the start,
both the position of X and the value of LINPOS are equal to zero. Now assume that the objective is to
move the linear load to the position of 1000.

The first step is to command the X motor to move to the rotary position of 1000. Once it arrives we
check the position of the load. If, for example, the load position is 980 counts, it implies that a
correction of 20 counts must be made. However, when the X-axis is commanded to be at the position
of 1000, suppose that the actual position is only 995, implying that X has a position error of 5 counts,
which will be eliminated once the motor settles. This implies that the correction needs to be only 15
counts, since 5 counts out of the 20 would be corrected by the X-axis. Accordingly, the motion
correction should be:

Correction = Load Position Error - Rotary Position Error

The correction can be performed a few times until the error drops below +/-2 counts. Often, this is
performed in one correction cycle.

Instruction Interpretation
#A Label

DPO Define starting positions as zero
linpos=0

PR 1000 Required distance
BGA Start motion

#B

AMA Wait for completion
WT 50 Wait 50 msec

linpos = DEA Read linear position
er=1000- linpos - TEA Find the correction
JP #C,@ABS[er]<2 Exit if error is small
PR er Command correction
BGA

JP #B Repeat the process
#C

EN

DMC-2X00

Chapter 7 Application Programming e 155

THIS PAGE LEFT BLANK INTENTIONALLY

156 ¢ Chapter 7 Application Programming DMC-2X00

Chapter 8 Hardware & Software
Protection

Introduction

The DMC-2x00 provides several hardware and software features to check for error conditions and to
inhibit the motor on error. These features help protect the various system components from damage.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design
effective error handling and safety protection as part of the machine. Since the dmc-2x00 is an
integral part of the machine, the engineer should design his overall system with protection against
a possible component failure on the dmc-2x00. Galil shall not be liable or responsible for any
incidental or consequential damages.

Hardware Protection

The DMC-2x00 includes hardware input and output protection lines for various error and mechanical
limit conditions. These include:

Output Protection Lines

Amp Enable - This signal goes low when the motor off command is given, when the position
error exceeds the value specified by the Error Limit (ER) command, or when off-on-error
condition is enabled (OE1) and the abort command is given. Each axis amplifier has separate
amplifier enable lines. This signal also goes low when the watch-dog timer is activated, or
upon reset.

NOTE: The standard configuration of the AEN signal is TTL active low. Both the polarity
and the amplitude can be changed if you are using the ICM-2900 interface board. To make
these changes, see section entitled ‘Amplifier Interface’ pg 3-25.

Error Output - The error output is a TTL signal which indicates on error condition in the
controller. This signal is available on the interconnect module as ERROR. When the error
signal is low, this indicates on of the following error conditions.

1. At least one axis has a position error greater than the error limit. The error limit is set by
using the command ER.

2. The reset line on the controller is held low or is being affected by noise.
3. There is a failure on the controller and the processor is resetting itself.

4. There is a failure with the output IC which drives the error signal.

Input Protection Lines

General Abort - A low input stops commanded motion instantly without a controlled
deceleration. For any axis in which the Off-On-Error function is enabled, the amplifiers will
be disabled. This could cause the motor to ‘coast’ to a stop. If the Off-On-Error function is

DMC-2X00 Chapter 7 Application Programming e 157

not enabled, the motor will instantaneously stop and servo at the current position. The Off-
On-Error function is further discussed in this chapter.

Selective Abort - The controller can be configured to provide an individual abort for each axis.
Activation of the selective abort signal will act the same as the Abort Input but only on the
specific axis. To configure the controller for selective abort, issue the command CN,,,1. This
configures the inputs 5,6,7,8,13,14,15,16 to act as selective aborts for axes A,B,C,D,E,F,G,H
respectively.

Forward Limit Switch - Low input inhibits motion in forward direction. If the motor is moving
in the forward direction when the limit switch is activated, the motion will decelerate and
stop. In addition, if the motor is moving in the forward direction, the controller will
automatically jump to the limit switch subroutine, #LIMSWI (if such a routine has been
written by the user). The CN command can be used to change the polarity of the limit
switches.

Reverse Limit Switch - Low input inhibits motion in reverse direction. If the motor is moving in
the reverse direction when the limit switch is activated, the motion will decelerate and stop.
In addition, if the motor is moving in the reverse direction, the controller will automatically
jump to the limit switch subroutine, #LIMSWI (if such a routine has been written by the user).
The CN command can be used to change the polarity of the limit switches.

Software Protection

The DMC-2x00 provides a programmable error limit. The error limit can be set for any number
between 1 and 32767 using the ER n command. The default value for ER is 16384.

ER 200,300,400,500 Set A-axis error limit for 200, B-axis error limit to 300, C-axis error limit to
400 counts, D-axis error limit to 500 counts

ER,1,,10 Set B-axis error limit to 1 count, set D-axis error limit to 10 counts.

The units of the error limit are quadrature counts. The error is the difference between the command
position and actual encoder position. If the absolute value of the error exceeds the value specified by
ER, the DMC-2x00 will generate several signals to warn the host system of the error condition. These
signals include:

SIGNAL OR FUNCTION STATE IF ERROR OCCURS

POSERR Jumps to automatic excess position error subroutine
Error Light Turns on

OE Function Shuts motor off if OE1

AEN Output Line Goes low

The Jump on Condition statement is useful for branching on a given error within a program. The
position error of A,B,C and D can be monitored during execution using the TE command.

Programmable Position Limits

The DMC-2x00 provides programmable forward and reverse position limits. These are set by the BL
and FL software commands. Once a position limit is specified, the DMC-2x00 will not accept position
commands beyond the limit. Motion beyond the limit is also prevented.

158 o Chapter 7 Application Programming DMC-2X00

Example

Instruction Interpretation
DP0,0,0 Define Position

BL -2000,-4000,-8000 Set Reverse position limit
FL 2000,4000,8000 Set Forward position limit
JG 2000,2000,2000 Jog

BG ABC Begin

(motion stops at forward limits)

Off-On-Error

The DMC-2x00 controller has a built in function which can turn off the motors under certain error
conditions. This function is know as ‘Off-On-Error”. To activate the OE function for each axis,
specify 1 for A,B,C and D axis. To disable this function, specify 0 for the axes. When this function is
enabled, the specified motor will be disabled under the following 3 conditions:

1. The position error for the specified axis exceeds the limit set with the command, ER
2. The abort command is given
3. The abort input is activated with a low signal.

NOTE: If the motors are disabled while they are moving, they may ‘coast’ to a stop because they are
no longer under servo control.

To re-enable the system, use the Reset (RS) or Servo Here (SH) command.

Example
OE 1,1,1,1 Enable off-on-error for A,B,C and D
OE 0,1,0,1 Enable off-on-error for B and D axes, Disable off-on-error for A and C

Automatic Error Routine

The #POSERR label causes the statements following to be automatically executed if error on any axis
exceeds the error limit specified by ER. The error routine must be closed with the RE command. The
RE command returns from the error subroutine to the main program.

NOTE: The Error Subroutine will be entered again unless the error condition is gone.

Example
Instruction Interpretation
#A;JP #AEN "Dummy" program
#POSERR Start error routine on error
MG "error" Send message
SB 1 Fire relay
STA Stop motor
AMA After motor stops
SHA Servo motor here to clear error
RE Return to main program

NOTE: An applications program must be executing for the #POSERR routine to function.

DMC-2X00 Chapter 7 Application Programming ¢ 159

Limit Switch Routine

The DMC-2x00 provides forward and reverse limit switches which inhibit motion in the respective
direction. There is also a special label for automatic execution of a limit switch subroutine. The
#LIMSWI label specifies the start of the limit switch subroutine. This label causes the statements
following to be automatically executed if any limit switch is activated and that axis motor is moving in
that direction. The RE command ends the subroutine.

The state of the forward and reverse limit switches may also be tested during the jump-on-condition
statement. The LR condition specifies the reverse limit and LF specifies the forward limit. A,B,C,
or D following LR or LF specifies the axis. The CN command can be used to configure the polarity of

the limit switches.

Example
Instruction
#A;JP #AEN
#LIMSWI
vl= LFA
v2= LRA
JPHLF,v1=0
JPHLR,v2=0
JPHEND
#LF
MG "FORWARD LIMIT"
STX;AMA
PR-1000;BGA;AMA
JPHEND
#LR
MG "REVERSE LIMIT"
STX;AMA
PR1000;BGA;AMA
#END
RE

NOTE: An applications program must be executing for #L.IMSWI to function.

Interpretation
Dummy Program
Limit Switch Utility
Check if forward limit
Check if reverse limit
Jump to #LF if forward
Jump to #LR if reverse
Jump to end

#LF

Send message

Stop motion

Move in reverse

End

#LR

Send message

Stop motion

Move forward

End

Return to main program

160 o Chapter 7 Application Programming

DMC-2X00

Chapter 9 Troubleshooting

Overview

The following discussion may help you get your system to work.

Potential problems have been divided into groups as follows:

1. Installation

2. Communication

3. Stability and Compensation
4. Operation

The various symptoms along with the cause and the remedy are described in the following tables.

Installation

SYMPTOM

CAUSE

REMEDY

Motor runs away when connected to amplifier with
no additional inputs.

Amplifier offset too
large.

Adjust amplifier offset

Same as above, but offset adjustment does not stop
the motor.

Damaged amplifier.

Replace amplifier.

Controller does not read changes in encoder position.

Wrong encoder
connections.

Check encoder wiring.

Same as above

Bad encoder

Check the encoder signals.
Replace encoder if necessary.

Same as above

Bad controller

Connect the encoder to
different axis input. If it works,
controller failure. Repair or
replace.

DMC-2X00

Chapter 9 Troubleshooting ¢ 161

Communication

SYMPTOM

CAUSE

REMEDY

Using terminal emulator, cannot
communicate with controller.

Selected comm. port incorrect

Try another comport

Same as above

Selected baud rate incorrect

Check to be sure that baud rate
same as dip switch settings on
controller, change as necessary.

Stability

SYMPTOM

CAUSE

REMEDY

Motor runs away when the loop is
closed.

Wrong feedback polarity.

Invert the polarity of the loop by
inverting the motor leads (brush type)
or the encoder.

Motor oscillates.

Too high gain or too little
damping.

Decrease KI and KP. Increase KD.

Operation

SYMPTOM

CAUSE

REMEDY

Controller rejects command.
Responded with a ?

Anything.

Interrogate the cause with TC or
TCl1.

Motor does not complete move.

Noise on limit switches stops the
motor.

To verify cause, check the stop
code (SC). If caused by limit
switch noise, reduce noise.

During a periodic operation, motor
drifts slowly.

Encoder noise

Interrogate the position
periodically. If controller states
that the position is the same at
different locations it implies
encoder noise. Reduce noise. Use
differential encoder inputs.

Same as above.

Programming error.

Avoid resetting position error at
end of move with SH command.

162 o Chapter 9 Troubleshooting

DMC-2X00

Chapter 10 Theory of Operation

Overview

The following discussion covers the operation of motion control systems. A typical motion control
system consists of the elements shown in Fig 10.1.

COMPUTER CONTROLLER DRIVER

ENCODER GOTOR

Figure 10.1 - Elements of Servo Systems

The operation of such a system can be divided into three levels, as illustrated in Fig. 10.2. The levels
are:

1. Closing the Loop
2. Motion Profiling
3. Motion Programming

The first level, the closing of the loop, assures that the motor follows the commanded position. This is
done by closing the position loop using a sensor. The operation at the basic level of closing the loop
involves the subjects of modeling, analysis, and design. These subjects will be covered in the
following discussions.

The motion profiling is the generation of the desired position function. This function, R(t), describes
where the motor should be at every sampling period. Note that the profiling and the closing of the loop
are independent functions. The profiling function determines where the motor should be and the
closing of the loop forces the motor to follow the commanded position

DMC-2X00

Chapter 10 Theory of Operation ¢ 163

The highest level of control is the motion program. This can be stored in the host computer or in the
controller. This program describes the tasks in terms of the motors that need to be controlled, the
distances and the speed.

MOTION
3 PROGRAMMING
MOTION
2 PROFILING
CLOSED-LOOP
1 CONTROL

Figure 10.2 - Levels of Control Functions

The three levels of control may be viewed as different levels of management. The top manager, the
motion program, may specify the following instruction, for example.

PR 6000,4000

SP 20000,20000
AC 200000,00000
BG A

AD 2000

BGB

EN

This program corresponds to the velocity profiles shown in Fig. 10.3. Note that the profiled positions
show where the motors must be at any instant of time.

Finally, it remains up to the servo system to verify that the motor follows the profiled position by
closing the servo loop.

The following section explains the operation of the servo system. First, it is explained qualitatively,
and then the explanation is repeated using analytical tools for those who are more theoretically
inclined.

164 ¢ Chapter 10 Theory of Operation DMC-2X00

X VELQOCITY

Y VELOCITY

X POSITION

Y POSITION

TIME
Figure 10.3 - Velocity and Position Profiles

Operation of Closed-Loop Systems

To understand the operation of a servo system, we may compare it to a familiar closed-loop operation,
adjusting the water temperature in the shower. One control objective is to keep the temperature at a
comfortable level, say 90 degrees F. To achieve that, our skin serves as a temperature sensor and
reports to the brain (controller). The brain compares the actual temperature, which is called the
feedback signal, with the desired level of 90 degrees F. The difference between the two levels is called
the error signal. If the feedback temperature is too low, the error is positive, and it triggers an action
which raises the water temperature until the temperature error is reduced sufficiently.

The closing of the servo loop is very similar. Suppose that we want the motor position to be at 90
degrees. The motor position is measured by a position sensor, often an encoder, and the position
feedback is sent to the controller. Like the brain, the controller determines the position error, which is
the difference between the commanded position of 90 degrees and the position feedback. The
controller then outputs a signal that is proportional to the position error. This signal produces a
proportional current in the motor, which causes a motion until the error is reduced. Once the error
becomes small, the resulting current will be too small to overcome the friction, causing the motor to
stop.

The analogy between adjusting the water temperature and closing the position loop carries further. We
have all learned the hard way, that the hot water faucet should be turned at the "right" rate. If you turn
it too slowly, the temperature response will be slow, causing discomfort. Such a slow reaction is called
overdamped response.

DMC-2X00

Chapter 10 Theory of Operation e 165

The results may be worse if we turn the faucet too fast. The overreaction results in temperature
oscillations. When the response of the system oscillates, we say that the system is unstable. Clearly,
unstable responses are bad when we want a constant level.

What causes the oscillations? The basic cause for the instability is a combination of delayed reaction
and high gain. In the case of the temperature control, the delay is due to the water flowing in the pipes.
When the human reaction is too strong, the response becomes unstable.

Servo systems also become unstable if their gain is too high. The delay in servo systems is between
the application of the current and its effect on the position. Note that the current must be applied long
enough to cause a significant effect on the velocity, and the velocity change must last long enough to
cause a position change. This delay, when coupled with high gain, causes instability.

This motion controller includes a special filter which is designed to help the stability and accuracy.
Typically, such a filter produces, in addition to the proportional gain, damping and integrator. The
combination of the three functions is referred to as a PID filter.

The filter parameters are represented by the three constants KP, KI and KD, which correspond to the
proportional, integral and derivative term respectively.

The damping element of the filter acts as a predictor, thereby reducing the delay associated with the
motor response.

The integrator function, represented by the parameter KI, improves the system accuracy. With the KI
parameter, the motor does not stop until it reaches the desired position exactly, regardless of the level
of friction or opposing torque.

The integrator also reduces the system stability. Therefore, it can be used only when the loop is stable
and has a high gain.

The output of the filter is applied to a digital-to-analog converter (DAC). The resulting output signal in
the range between +10 and -10 volts is then applied to the amplifier and the motor.

The motor position, whether rotary or linear is measured by a sensor. The resulting signal, called
position feedback, is returned to the controller for closing the loop.

The following section describes the operation in a detailed mathematical form, including modeling,
analysis and design.

System Modeling

The elements of a servo system include the motor, driver, encoder and the controller. These elements
are shown in Fig. 10.4. The mathematical model of the various components is given below.

CONTROLLER
R X DIGITAL | Y \Y E
—_ | ELLTER ZOH DAC AMP MOTOR
C
P
ENCODER

Figure 10.4 - Functional Elements of a Motion Control System

166 ¢ Chapter 10 Theory of Operation DMC-2X00

Motor-Amplifier

The motor amplifier may be configured in three modes:
1. Voltage Drive
2. Current Drive
3. Velocity Loop

The operation and modeling in the three modes is as follows:

Voltage Drive

The amplifier is a voltage source with a gain of Kv [V/V]. The transfer function relating the input
voltage, V, to the motor position, P, is

P/V =K, [K,S(ST, +1)(ST, +1)]

where
2
T, =RJ/K? [s]
and
T,=L/R [s]
and the motor parameters and units are
K¢ Torque constant [Nm/A]
R Armature Resistance Q
J Combined inertia of motor and load [kg.mz]
L Armature Inductance [H]

When the motor parameters are given in English units, it is necessary to convert the quantities to MKS
units. For example, consider a motor with the parameters:

K{=14.16 0z - in/A = 0.1 Nm/A
R=2Q

J=0.0283 oz-in-s2 = 2.10"4 kg . m?2

L=0.004 H

Then the corresponding time constants are
Ty, = 0.04 sec

and
Te =0.002 sec

Assuming that the amplifier gain is Kv = 4, the resulting transfer function is

P/V = 40/[s(0.04s+1)(0.002s+1)]

Current Drive

The current drive generates a current I, which is proportional to the input voltage, V, with a gain of Ka.
The resulting transfer function in this case is

P/V =K, K/ Js?

DMC-2X00

Chapter 10 Theory of Operation e 167

where Kt and J are as defined previously. For example, a current amplifier with K, =2 A/V with the
motor described by the previous example will have the transfer function:
P/V = 1000/s2 [rad/V]

If the motor is a DC brushless motor, it is driven by an amplifier that performs the commutation. The
combined transfer function of motor amplifier combination is the same as that of a similar brush
motor, as described by the previous equations.

Velocity Loop

The motor driver system may include a velocity loop where the motor velocity is sensed by a
tachometer and is fed back to the amplifier. Such a system is illustrated in Fig. 10.5. Note that the
transfer function between the input voltage V and the velocity o is:

o /V =[K, KgIs/[14K, K¢ Kg/Js] = 1/[Kg(sT1+1)]
where the velocity time constant, T1, equals
T1=1J/K, K¢ Kg

This leads to the transfer function

P/V = l/[Kg s(sT1+1)]

K Kt/Js

Figure 10.5 - Elements of velocity loops

The resulting functions derived above are illustrated by the block diagram of Fig. 10.6.

168 ¢ Chapter 10 Theory of Operation DMC-2X00

VOLTAGE SOURCE

Vv

E W P
1K,

K (ST_+1)(ST_+1) s

-_—

CURRENT SOURCE

Vv

VELOCITY LOOP

\Y

1

-

Ky(ST,+1) S

Figure 10.6 - Mathematical model of the motor and amplifier in three operational modes

Encoder

The encoder generates N pulses per revolution. It outputs two signals, Channel A and B, which are in
quadrature. Due to the quadrature relationship between the encoder channels, the position resolution is
increased to 4N quadrature counts/rev.

The model of the encoder can be represented by a gain of

K¢=4N/2n [count/rad]

For example, a 1000 lines/rev encoder is modeled as

Kp=638

DMC-2X00

Chapter 10 Theory of Operation e 169

DAC

The DAC or D-to-A converter converts a 16-bit number to an analog voltage. The input range of the
numbers is 65536 and the output voltage range is +/-10V or 20V. Therefore, the effective gain of the
DAC is

K=20/65536 = 0.0003 [V/count]

Digital Filter

The digital filter has three elements in series: PID, low-pass and a notch filter. The transfer function of
the filter. The transfer function of the filter elements are:

K(Z-4) CZ

PID D(z) = +
V4 Z -1
L _1-B
OW-pass L(z) = 7_B
Z-2)(Z-z

Notch N(z) = (2N i)

(Z-pZ-p)

The filter parameters, K, A, C and B are selected by the instructions KP, KD, KI and PL, respectively.
The relationship between the filter coefficients and the instructions are:

K=(KP+KD)" 4
A =KD/(KP +KD)
C=KI2
B=PL
The PID and low-pass elements are equivalent to the continuous transfer function G(s).

G(s)= (P +sD + I/s) = a/(S+a)

P = 4KP
D =4T* KD
1= KI2T

a=1/T In=(1/B)

where T is the sampling period.

170 o Chapter 10 Theory of Operation DMC-2X00

For example, if the filter parameters of the DMC-2x00 are
KP=4
KD =36
KI=2
PL=0.75
T=0.001s
the digital filter coefficients are
K =160
A=09
C=1
a =250 rad/s
and the equivalent continuous filter, G(s), is

G(s) =[16 + 0.144s + 1000/s} * 250/ (s+250)

The notch filter has two complex zeros, Z and z, and two complex poles, P and p.

The effect of the notch filter is to cancel the resonance affect by placing the complex zeros on top of
the resonance poles. The notch poles, P and p, are programmable and are selected to have sufficient
damping. It is best to select the notch parameters by the frequency terms. The poles and zeros have a
frequency in Hz, selected by the command NF. The real part of the poles is set by NB and the real part
of the zeros is set by NZ.

The simplest procedure for setting the notch filter is to identify the resonance frequency and set NF to
the same value. Set NB to about one half of NF and set NZ to a low value between zero and 5.

ZOH

The ZOH, or zero-order-hold, represents the effect of the sampling process, where the motor command
is updated once per sampling period. The effect of the ZOH can be modeled by the transfer function

H(s) = 1/(1+sT/2)

If the sampling period is T = 0.001, for example, H(s) becomes:
H(s) = 2000/(s+2000)

However, in most applications, H(s) may be approximated as one.

This completes the modeling of the system elements. Next, we discuss the system analysis.

DMC-2X00 Chapter 10 Theory of Operation ® 171

System Analysis

To analyze the system, we start with a block diagram model of the system elements. The analysis
procedure is illustrated in terms of the following example.

Consider a position control system with the DMC-2x00 controller and the following parameters:

K¢{=0.1 Nm/A Torque constant

J= 2.10—4 kg.m2 System moment of inertia
R=2 Q Motor resistance

K,=4 AV Current amplifier gain
KP=125 Digital filter gain

KD =245 Digital filter zero

KI=0 No integrator

N =500 Counts/rev Encoder line density
T=1 ms Sample period

The transfer function of the system elements are:

Motor

M(s) = P/ = Kt/Js2 = 500/s2 [rad/A]
Amp

K, =4 [Amp/V]
DAC

K4 =0.0003 [V/count]
Encoder

K¢=4N/2r = 318 [count/rad]
ZOH

2000/(s+2000)
Digital Filter

KP=12.5, KD=245, T=0.001
Therefore,

D(z) = 1030 (z-0.95)/Z
Accordingly, the coefficients of the continuous filter are:
P=50
D=0.98
The filter equation may be written in the continuous equivalent form:
G(s) =50+ 0.98s =.098 (s+51)

The system elements are shown in Fig. 10.7.

172 o Chapter 10 Theory of Operation DMC-2X00

FILTER ZOH DAC AMP MOTOR

50+0.980s 2000 0.0003 4 500
S+2000 &
ENCODER
318

Figure 10.7 - Mathematical model of the control system
The open loop transfer function, A(s), is the product of all the elements in the loop.
A =390,000 (s+51)/[s2(s+2000)]

To analyze the system stability, determine the crossover frequency, o at which A(j o) equals one.
This can be done by the Bode plot of A(j), as shown in Fig. 10.8.

Magnitude
1
50 200 2000 W (rad/s)
0.1

Figure 10.8 - Bode plot of the open loop transfer function

For the given example, the crossover frequency was computed numerically resulting in 200 rad/s.

Next, we determine the phase of A(s) at the crossover frequency.
A(j200) = 390,000 (]'200+51)/[(j200)2 . (j200 +2000)]

o = Arg[A(j200)] = tan~1(200/51)-180° -tan~1(200/2000)
o= 76°- 180° - 6° = -110°

DMC-2X00

Chapter 10 Theory of Operation e 173

Finally, the phase margin, PM, equals
PM = 180° + o = 70°

As long as PM is positive, the system is stable. However, for a well damped system, PM should be
between 30 degrees and 45 degrees. The phase margin of 70 degrees given above indicated
overdamped response.

Next, we discuss the design of control systems.

System Desigh and Compensation

The closed-loop control system can be stabilized by a digital filter, which is preprogrammed in the
DMC-2x00 controller. The filter parameters can be selected by the user for the best compensation.
The following discussion presents an analytical design method.

The Analytical Method

The analytical design method is aimed at closing the loop at a crossover frequency, o, with a phase

margin PM. The system parameters are assumed known. The design procedure is best illustrated by a
design example.

Consider a system with the following parameters:

K¢ Nm/A Torque constant
J=2.10% kg.rn2 System moment of inertia
R=2 Q Motor resistance

K,=2 AV Current amplifier gain

N =1000 Counts/rev Encoder line density

The DAC of the DMC-2x00 outputs +/-10V for a 14-bit command of +/-8192 counts.

The design objective is to select the filter parameters in order to close a position loop with a crossover
frequency of w; = 500 rad/s and a phase margin of 45 degrees.

The first step is to develop a mathematical model of the system, as discussed in the previous system.

Motor

M(s) = P/I = Ky/Js2 = 1000/s2
Amp

K,=2 [Amp/V]
DAC

K4 =10/32768 = .0003
Encoder

Kf=4N/2m =636
ZOH

H(s) = 2000/(s+2000)
Compensation Filter

G(s)=P +sD

174 o Chapter 10 Theory of Operation DMC-2X00

The next step is to combine all the system elements, with the exception of G(s), into one function, L(s).
L(s) = M(s) K, Kq K¢ H(s) =3.17%100/[s2(s+2000)]

Then the open loop transfer function, A(s), is
A(s) =L(s) G(s)

Now, determine the magnitude and phase of L(s) at the frequency o, = 500.

L(j500) = 3.17%100/[(i500)2 (j500+2000)]
This function has a magnitude of
IL(j500)| = 0.00625
and a phase
Arg[L(j500)] = -180° - tan"1(500/2000) = -194°

G(s) is selected so that A(s) has a crossover frequency of 500 rad/s and a phase margin of 45 degrees.
This requires that

|A(G500)| =1
Arg [A(j500)] =-135°
However, since
A(s) =L(s) G(s)
then it follows that G(s) must have magnitude of
|G(3500)| = |A(G500)/L(G500)| = 160
and a phase
arg [G(j500)] = arg [A(j500)] - arg [L(j500)] =-135° + 194° = 59°
In other words, we need to select a filter function G(s) of the form
G(s)=P+sD
so that at the frequency o, =500, the function would have a magnitude of 160 and a phase lead of 59
degrees.
These requirements may be expressed as:
|G(j500)| = |P + (j500D)| = 160
and
arg [G(j500)] = tan"1[S00D/P] = 59°
The solution of these equations leads to:
P =160cos 59° = 82.4
500D = 160sin 59° = 137
Therefore,
D=0.274
and

G =82.4+0.2744s

DMC-2X00

Chapter 10 Theory of Operation e 175

The function G is equivalent to a digital filter of the form:
D(z) = 4KP + 4KD(1-z" 1)

where
P=4%KP
D=4+*KD=*T

and

4+« KD =D/T
Assuming a sampling period of T=1ms, the parameters of the digital filter are:
KP =20.6
KD =68.6
The DMC-2x00 can be programmed with the instruction:
KP 20.6
KD 68.6

In a similar manner, other filters can be programmed. The procedure is simplified by the following
table, which summarizes the relationship between the various filters.

Equivalent Filter Form

DMC-2x00
Digital D(z) =[K(z-A/z) + Cz/(z-1)]* (1-B)/(Z-B)
Digital D(z) = [4 KP + 4 KD(1-z"1) + KI/2(1-z"1)] *(1-B)/(Z-B)

KP, KD, KI,PL K=(KP+KD)* 4
A = KD/(KP+KD)
C=KI2
B=PL

Continuous G(s)= (P + Ds + I/s) * a/S+a
PID, T P=4KP

D =4 T*KD

I=KI2T

a=1/T In (1/PL)

176 o Chapter 10 Theory of Operation DMC-2X00

Appendices

Electrical Specifications

Servo Control
ACMD Amplifier Command:

A+,A-,B+,B-,IDX+,IDX- Encoder and
Auxiliary

Stepper Control

Pulse

Direction

Input / Output

Limit Switch Inputs, Home Inputs.

IN[1] thru IN[8] Uncommitted Inputs and

Abort Input

IN[9] thru IN[16] Uncommitted Inputs
(DMC-2x50 through DMC-2x80 only)

ANT[1] thru AN[8] Analog Inputs:

OUT[1] thru OUT[8] Outputs:
OUT[9] thru OUT[16] Outputs:
(DMC-2x50 through DMC-2x80 only)
IN[81], IN[82]

+/-10 volt analog signal. Resolution 16-bit DAC or
0.0003 volts. 3 mA maximum

TTL compatible, but can accept up to +/-12 volts.
Quadrature phase on CHA, CHB. Can accept single-
ended (A+,B+ only) or differential (A+,A-,B+,B-).
Maximum A, B edge rate: 12 MHz. Minimum IDX pulse
width: 80 nsec.

TTL (0-5 volts) level at 50% duty cycle. 3,000,000
pulses/sec maximum frequency

TTL (0-5 volts)

2.2K ohm in series with opto-isolator. Active high or low
requires at least 1mA to activate. Once activated, the
input requires the current to go below 0.5ma. All Limit
Switch and Home inputs use one common voltage
(LSCOM) which can accept up to 24 volts. Voltages
above 24 volts require an additional resistor.

>1mA=0N; <0.5mA=0FF
Standard configuration is +/-10 volts. 12-Bit Analog-to-
Digital converter. 16-bit optional.
TTL
TTL

Auxiliary Encoder Inputs for A (X) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

DMC-2X00

Appendices ¢ 177

IN[83], IN[84]
(DMC-2x20 through DMC-2x80 only)

IN[85], IN[86]
(DMC-2x30 through DMC-2x80 only)

IN[87], IN[88]
(DMC-2x40 through DMC-2x80 only)

IN[89], IN[90]
(DMC-2x50 through DMC-2x80 only)

IN[91], IN[92]
(DMC-2x60 through DMC-2x80 only)

IN[93], IN[94]
(DMC-2x70 through DMC-2x80 only)

IN[95], IN[96]
(DMC-2x80 only)

Power

+5V 1.TA
+12V 40 mA
-12V 40 mA

Auxiliary Encoder Inputs for B (Y) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for C (Z) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for D (W) axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for E axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for F axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for G axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Auxiliary Encoder Inputs for H axis. Line Receiver
Inputs - accepts differential or single ended voltages with
voltage range of +/- 12 volts.

Performance Specifications

Minimum Servo Loop Update Time:

DMC-2x10
DMC-2x20
DMC-2x30
DMC-2x40
DMC-2x50
DMC-2x60
DMC-2x70
DMC-2x80

Position Accuracy:

Normal Fast Firmware
250 psec 125 usec
250 psec 125 psec
375 psec 250 psec
375 usec 250 usec
500 psec 375 usec
500 psec 375 usec
625 usec 500 psec
625 usec 500 usec

+/-1 quadrature count

178 e Appendices

DMC-2X00

Velocity Accuracy:
Long Term
Short Term

Position Range:

Velocity Range:

Velocity Resolution:

Motor Command Resolution:

Variable Range:
Variable Resolution:
Array Size:

Program Size:

Phase-locked, better than .005%

System dependent

+/-2147483647 counts per move

Up to 12,000,000 counts/sec
Servo;

3,000,000 pulses/sec-stepper
2 counts/sec

16 bit or 0.0003 V

+/-2 billion

1-104

8000 elements, 30 arrays

1000 lines x 80 characters

Fast Update Rate Mode

The DMC-2x00 can operate with much faster servo update rates. This mode is known as 'fast mode'
and allows the controller to operate with the following update rates:

DMC-2x10, DMC-2x20
DMC-2x30, DMC-2x40
DMC-2x50, DMC-2x60
DMC-2x70, DMC-2x80

125 usec
250 usec
375 usec
500 usec

In order to run the DMC-2x00 motion controller in fast mode, the fast firmware must be uploaded.
This can be done through the Galil terminal software such as DMCTERM and WSDK. The fast
firmware is included with the original DMC-2x00 utilities. To set the update rate use command TM.

When the controller is operating with the fast firmware, the following functions are disabled:

Gearing mode

Ecam mode

Pole (PL)

Analog Feedback (AF)

Stepper Motor Operation (MT 2,-2,2.5,-2.5)

Trippoints in thread 2-8
DMA channel

Tell Velocity Interrogation Command (TV)

DMC-2X00

Appendices ¢ 179

Connectors for DMC-2x00 Main Board

DMC-2x00 Axes A-D High Density Connector

1 Analog Ground 51 nc

2 gnd 52 gnd

3 Sv 53 5v

4 error output 54 limit common
5 reset 55 home W

6 encoder-compare output 56 reverse limit W
7 gnd 57 forward limit W
8 gnd 58 home Z

9 motor command W 59 reverse limit Z
10 sign W/ dir W 60 forward limit Z
11 pwm W /step W 61 home Y

12 motor command Z 62 reverse limit Y
13 sign Z/dir Z 63 forward limit Y
14 pwmZ/step Y 64 home X

15 motor command Y 65 reverse limit X
16 sign Y /dir Y 66 forward limit X
17 pwm Y /step Y 67 gnd

18 motor command X 68 Sv

19 sign X /dir X 69 input common
20 pwm X /step X 70 latch X

21 amp enable W 71 latch Y

22 amp enable Z 72 latch Z

23 amp enable y 73 latch W

24 amp enable X 74 input 5

25 A+X 75 input 6

26 A-X 76 input 7

27 B+X 77 input 8

28 B-X 78 abort

29 1+X 79 output 1

30 I-X 80 output 2

31 A+Y 81 output 3

32 A-Y 82 output 4

33 B+Y 83 output 5

34 B-Y 84 output 6

35 I+Y 85 output 7

36 1-Y 86 output 8

37 A+Z 87 5v pos

38 A-Z 88 gnd

39 B+Z 89 gnd

40 B-Z 90 gnd

41 1+7 91 analogin 1

42 1-Z 92 analogin 2

43 A+W 93 analog in 3

44 A-W 94 analog in 4

45 B+W 95 analogin 5

180 ¢ Appendices

DMC-2X00

46 B-W 96 analogin 6
47 1+W 97 analogin 7
48 1-W 98 analog in 8
49 +12V 99 -12v
50 +12V 100 -12v

DMC-2x00 Axes E-H High Density Connector

1 nc 51 nc

2 gnd 52 gnd

3 Sv 53 Sv

4 error output 54 limit common
S reset 55 home H

6 encoder-compare output 56 reverse limit H
7 end 57 forward limit H
8 gnd 58 home G

9 motor command H 59 reverse limit G
10 sign H/dir H 60 forward limit G
11 pwmH/step H 61 home F

12 motor command G 62 reverse limit F
13 sign G/ dir G 63 forward limit F
14 pwm G/ step G 64 home E

15 motor command F 65 reverse limit E
16 sign F /dir F 66 forward limit E
17 pwm F /step F 67 gnd

18 motor command E 68 Sv

19 sign E/dir E 69 input common
20 pwm E /step E 70 latch E

21 amp enable H 71 latch F

22 amp enable G 72 latch G

23 amp enable F 73 latch H

24 amp enable E 74 input 13

25 A+E 75 input 14

26 A-E 76 input 15

27 B+E 77 input 16

28 B-E 78 abort

29 I+E 79 output 9

30 I-E 80 output 10

31 A+F 81 output 11

32 A-F 82 output 12

33 B+F 83 output 13

34 B-F 84 output 14

35 I+F 85 output 15

36 1I-F 86 output 16

37 A+G 87 5v

38 A-G 88 gnd

39 B+G 89 gnd

40 B-G 90 gnd

41 1+G 91 nc

42 1-G 92 nc

DMC-2X00

Appendices ¢ 181

43 A+H 93 nc
44 A-H 94 nc
45 B+H 95 nc
46 B-H 96 nc
47 1+H 97 nc
48 1-H 98 nc
49 +12V 99 -12v
50 +12V 100 -12v

DMC-2x00 Auxiliary Encoder 36 Pin High Density Connector

1 Sv 19 5v

2 gnd 20 gnd

3 +aaX 21 +aaE
4 -aaX 22 -aaE
5 +abX 23 +abE
6 -abX 24 -abE
7 4aa¥Y 25 +aaF
8 -aa¥Y 26 -aaF
9 +abY 27 +abF
10 -abY 28 -abF
11 +aaZ 29 +aaG
12 -aaZ 30 -aaG
13 +abZ 31 +abG
14 -abZ 32 -abG
15 +aaW 33 +aaH
16 -aaW 34 -aaH
17 +abW 35 +abH
18 -abW 36 -abH

DMC-2x00 Extended 1/O 80 Pin High Density Connector

Pin Signal Block Bit @IN[n], @OUT|n] Bit No

1 1/0 8 72 7

2 1/0 9 73 0

3 1/0 8 71 6

4 1/0 9 74 1

5 1/0 8 70 5

6 1/0 9 75 2

7 1/0 8 69 4

8 1/0 9 76 3

9 1/0 8 68 3
10 1/0 9 77 4
11 1/0 8 67 2
12 1/0 9 78 5
13 1/0 8 66 1
14 1/0 9 79 6
15 1/0 8 65 0
16 1/0 9 80 7
17 1/0 7 64 7
18 GND -- -- GND

182 e Appendices DMC-2X00

19 1/0 7 63 6
20 GND -- -- GND
21 1/0 7 62 5
22 GND -- -- GND
23 1/0 7 61 4
24 GND -- - GND
25 1/0 7 60 3
26 GND -- - GND
27 1/0 7 59 2
28 GND -- - GND
29 1/0 7 58 1
30 GND -- -- GND
31 1/0 7 57 0
32 1/0 6 56 7
33 1/0 6 55 6
34 1/0 6 54 5
35 1/0 6 53 4
36 1/0 6 52 3
37 1/0 6 51 2
38 1/0 6 50 1
39 1/0 6 49 0
40 +5V -- - +5V
41 1/0 4 40 7
42 1/0 5 41 0
43 1/0 4 39 6
44 1/0 5 42 1
45 1/0 4 38 5
46 1/0 5 43 2
47 1/0 4 37 4
48 1/0 5 44 3
49 1/0 4 36 3
50 1/0 5 45 4
51 1/0 4 35 2
52 1/0 5 46 5
53 1/0 4 34 1
54 1/0 5 47 6
55 1/0 4 33 0
56 1/0 5 48 7
57 1/0 3 32 7
58 GND -- -- GND
59 1/0 3 31 6
60 GND -- -- GND
61 1/0 3 30 5
62 GND - -- GND
63 1/0 3 29 4
64 GND -- -- GND
65 1/0 3 28 3
66 GND -- -- GND
67 1/0 3 27 2
68 GND -- -- GND
69 1/0 3 26 1
70 GND -- -- GND

DMC-2X00

Appendices ¢ 183

71 /O 3 25 0
72 /O 2 24 7
73 /0 2 23 6
74 /O 2 22 5
75 1/0 2 21 4
76 1/0 2 20 3
77 1/0 2 19 2
78 1/0 2 18 1
79 1/0 2 17 0
80 +5V -- -- +5V
RS-232-Main Port
Standard connector and cable, 9Pin
Pin Signal
1 CTS - OUTPUT
2 Transmit data-output
3 Receive data-input
4 RTS — input
5 Gnd
6 CTS — output
7 RTS — input
8 CTS — output
9 Nc
RS-232-Auxiliary Port
Standard connector and cable, 9Pin
Pin Signal
1 CTS — input
2 Transmit data-input
3 Receive data-output
4 RTS — output
5 Gnd
6 CTS — input
7 RTS — output
8 CTS — input
9 Sv
USB - In USB - Out
Series B, 4 pos Series A, 8 pos
Connector: Amp # 787780-1 Connector: Amp # 787617-1

184 o Appendices DMC-2X00

Ethernet

100 BASE-T/10 BASE-T - Kycon GS-NS-88-3.5

Pin Signal

TXP

TXN

RXP

NC

NC

RXN

NC

ol BRI e NN BV, B B SN BV N S

NC

10 BASE-2- AMP 227161-7

10 BASE-F- HP HFBR-1414 (TX, Transmitter)
HP HFBR-2416 (RX, Receiver)

Cable Connections for DMC-2x00

The DMC-2x00 requires the transmit, receive, and ground for slow communication rates. (i.e. 1200
baud) For faster rates the handshake lines are required. The connection tables below contain the
handshake lines. These descriptions and tables are for RS-232 only. RS-422 is available on request.

Standard RS-232 Specifications

25 pin Serial Connector (Male, D-type)

This table describes the pinout for standard serial ports found on most computers.

Pin Number

Function

NC

Transmitted Data

Received Data

Request to Send

Clear to Send

Data Set Ready

Signal Ground

Carrier Detect

Ol [N |n|lh~|WwWW|IND]—

+Transmit Current Loop Return

—
o

NC

—_
J—

-Transmit Current Loop Data

—
[\

NC

—_
W

NC

—_
N

NC

DMC-2X00

Appendices * 185

15 NC

16 NC

17 NC

18 +Receive Current Loop Data
19 NC

20 Data Terminal Ready

21 NC

22 Ring Indicator

23 NC

24 NC

25 -Receive Current Loop Return

9 Pin Serial Connector (Male, D-type)

Standard serial port connections found on most computers.

PIN NUMBER FUNCTION

1 Carrier Detect

2 Receive Data

3 Transmit Data

4 Data Terminal Ready
5 Signal Ground

6 Data Set Ready

7 Request to Send

8 Clear to Send

9 Ring Indicator

DMC-2x00 Serial Cable Specifications

Cable to Connect Computer 25 pin to Main Serial Port

25 Pin (Male - computer)

9 Pin (female - controller)

8 (Carrier Detect)

3 (Receive Data)

2 (Transmit Data)

20 (Data Terminal Ready)

7 (Signal Ground)

Controller Ground

O || |W|IN|—

Cable to Connect Computer 9 pin to Main Serial Port Cable (9 pin)

9 Pin (FEMALE - Computer)

9 Pin (FEMALE - Controller)

1 (Carrier Detect)

1

2 (Receive Data)

2

3 (Transmit Data)

186 ¢ Appendices

4 (Data Terminal Ready) 4
5 (Signal Ground) 5

Controller Ground 9

Cable to Connect Computer 25 pin to Auxiliary Serial Port Cable (9
pin)

25 Pin (Male - terminal) 9 Pin (male - controller)
20 (Data Terminal Ready)
2 (Transmit Data)

3 (Receive Data)

8 (Carrier Detect)

7 (Signal Ground)
Controller +5V

O |ln | |W| D] —

Cable to Connect Computer 9 pin to Auxiliary Serial Port Cable (9 pin)

9 Pin (FEMALE - terminal) 9 Pin (MALE - Controller)
4 (Data Terminal Ready)
3 (Transmit Data)

2 (Receive Data)

1 (Carrier Detect)

5 (Signal Ground)
Controller +5V

Ol |~ |W|IND|—

DMC-2X00 Appendices e 187

Pin-Out Description for DMC-2x00

Outputs

Analog Motor Command

+/- 10 volt range signal for driving amplifier. In servo mode,
motor command output is updated at the controller sample rate. In
the motor off mode, this output is held at the OF command level.

Amp Enable

Signal to disable and enable an amplifier. Amp Enable goes low
on Abort and OE].

PWM/STEP OUT

PWM/STEP OUT is used for directly driving power bridges for
DC servo motors or for driving step motor amplifiers. For servo
motors: If you are using a conventional amplifier that accepts a
+/-10 volt analog signal, this pin is not used and should be left
open. The PWM output is available in two formats: Inverter and
Sign Magnitude. In the Inverter mode, the PWM signal is .2%
duty cycle for full negative voltage, 50% for 0 voltage and 99.8%
for full positive voltage (25kHz switching frequency). In the Sign
Magnitude Mode (Jumper SM), the PWM signal is 0% for 0
voltage, 99.6% for full voltage and the sign of the Motor
Command is available at the sign output (SOkHz switching
frequency).

PWM/STEP OUT

For step motors: The STEP OUT pin produces a series of pulses
for input to a step motor driver. The pulses may either be low or
high. The pulse width is 50%. Upon Reset, the output will be low|
if the SM jumper is on. If the SM jumper is not on, the output will
be tristate.

Sign/Direction

Used with PWM signal to give the sign of the motor command for
servo amplifiers or direction for step motors.

Error

The signal goes low when the position error on any axis exceeds
the value specified by the error limit command, ER.

Output 1-Output 8
Output 9-Output 16
(DMC-2x50 thru 2x80

These 8 TTL outputs are uncommitted and may be designated by
the user to toggle relays and trigger external events. The output
lines are toggled by Set Bit, SB, and Clear Bit, CB, instructions.
The OP instruction is used to define the state of all the bits of the
Output port.

Inputs

Encoder, A+, B+

Position feedback from incremental encoder with two channels in
quadrature, CHA and CHB. The encoder may be analog or TTL.
Any resolution encoder may be used as long as the maximum
frequency does not exceed 12,000,000 quadrature states/sec. The
controller performs quadrature decoding of the encoder signals
resulting in a resolution of quadrature counts (4 x encoder cycles).
NOTE: Encoders that produce outputs in the format of pulses and|
direction may also be used by inputting the pulses into CHA and
direction into Channel B and using the CE command to configure
this mode.

188 o Appendices

DMC-2X00

Encoder Index, I+

Once-Per-Revolution encoder pulse. Used in Homing sequence or|
Find Index command to define home on an encoder index.

Encoder, A-, B-, I-

Differential inputs from encoder. May be input along with CHA,
CHB for noise immunity of encoder signals. The CHA- and CHB-
inputs are optional.

Auxiliary Encoder, Aux A+,
Aux B+, Aux [+, Aux A-,

Inputs for additional encoder. Used when an encoder on both the
motor and the load is required. Not available on axes configured

Aux B-, Aux I- for step motors.

Abort A low input stops commanded motion instantly without a
controlled deceleration. Also aborts motion program.

Reset A low input resets the state of the processor to its power-on

condition. The previously saved state of the controller, along with
parameter values, and saved sequences are restored.

Forward Limit Switch

When active, inhibits motion in forward direction. Also causes
execution of limit switch subroutine, #LIMSWI. The polarity of
the limit switch may be set with the CN command.

Reverse Limit Switch

When active, inhibits motion in reverse direction. Also causes
execution of limit switch subroutine, #LIMSWI. The polarity of
the limit switch may be set with the CN command.

Home Switch

Input for Homing (HM) and Find Edge (FE) instructions. Upon
BG following HM or FE, the motor accelerates to slew speed. A
transition on this input will cause the motor to decelerate to a stop.
The polarity of the Home Switch may be set with the CN
command.

Input 1 - Input 8 isolated
Input 9 - Input 16 isolated

Uncommitted inputs. May be defined by the user to trigger
events. Inputs are checked with the Conditional Jump instruction
and After Input instruction or Input Interrupt. Input 1 is latch A,
Input 2 is latch B, Input 3 is latch C and Input 4 is latch D if the
high speed position latch function is enabled.

Latch

High speed position latch to capture axis position within 20
nanoseconds on occurrence of latch signal. AL command arms
latch. Input 1 is latch A, Input 2 is latch B, Input 3 is latch C and
Input 4 is latch D. Input 9 is latch E, input 10 is latch F, input 11
is latch G, input 12 is latch H.

DMC-2X00

Appendices ¢ 189

Jumper Description for DMC-2x00

Jumper Label Function (If jumpered)
JP5 MB SMX For each axis, the SM jumper selects the SM
SMY magnitude mode for servo motors or selects
SMZ stepper motors. If you are using stepper
SMW motors, SM must always be jumpered. The Analog
command is not valid with SM jumpered.
JP7 MB SME
SMF
SM G
SM H
OPT Reserved
JP1 MB MRST Master Reset enable. Returns controller to factory default
settings and erases EEPROM. Requires power-on or RESET
to be activated.
JP 3 DB for DMC-2000 UPGRADE | Used to upgrade controller firmware when resident firmware
JP4 DB for DMC-2100/2200 is corrupt.
JP4 DB for DMC-2000 AUX Serial Port Configuration for RS-232/RS-422
JP 5 for DMC-2100/2200
JP3 MAIN Main Serial Port configuration for RS-232/RS-422

NOTE: MB denotes motherboard. DB denotes daughter board.

190 o Appendices DMC-2X00

Dimensions for DMC-2x00

DMC-2080 MOUNTING DIMENSIONS
Overall Dimensions; 12.0" x 2.3" x 6.25"

R0.100" e
ZREACES \W_'Z PLACES
— 57 .
b R0.100 ﬂi‘ﬂ;
.| d A
P! i
[=! | |
N) g
7 S/ b
a
- 0.175" 12.050"
9.000" ,.0575"

‘ 1.250"

L]

p

S s s

0. 570"

460
0.580
(8] o
o ? 0 Zz00"
1
1
‘ 0.220
|
||
0.320
0.320
A
=)
A
0.995" |0 200"
=]

_Jl: 2940 L I
1340" 1105"
2940 l._0.070" 4.545"
6.350"
9310"
10 175"
10.75"

10"

& 250"

DMC-2X00 Appendices ¢ 191

Accessories and Options

DMC-20x0

1- 8 axis motion controllers where x specifies the number of axes

-16

16-Bit ADC Option for analog inputs

CABLE-100-1M

100-pin high density cable, 1 meter

CABLE-100-4M

100-pin high density cable, 4 meter

CABLE-80-1M 80-pin high density cable, 1 meter
CABLE-80-4M 80-pin high density cable, 4 meter
CABLE-36-1M 36-pin high density cable, 1 meter
CABLE-36-4M 36-pin high density cable, 4 meter

CABLE-USB-2M

USB cable, 2 meter

CABLE-USB-3M

USB cable, 3 meter

CB-50-100 50-pin to 100-pin converter board, includes two 50-pin ribbon cables
CB-50-80 50-pin to 80-pin converter board, includes two 50-pin ribbon cables
ICM-1900 Interconnect module
-LAEN Option for ICM-1900
Provides Active Low Amplifier Enable Signal
-OPTO Option for ICM-1900
Provides OptoOQisolation for digital outputs
-OPTOHC Option for ICM-1900
Provides High Current Opto-isolation for digital outputs
AMP-19x0 Interconnect module with 1 - 4 brush motor amplifiers where x specifies the number
of amplifiers.
-OPTO Option for AMP-19x0
Provides Opto0Qisolation for digital outputs
-OPTOHC Option for AMP-19x0
Provides High Current Opto-isolation for digital outputs
ICM-2900 Interconnect module with detachable screw terminal
-LAEN Option for ICM-2900
Provides Active Low Amplifier Enable Signal
-FL Option for ICM-2900 where the ICM-2900 includes flanges for rack mounting
-ST ICM-2900 module with screw terminal
-OPTO Option for AMP-19x0
Provides Opto-isolation for digital outputs
-OPTOHC Option for AMP-19x0

Provides High Current Opto-isolation for digital outputs

Galil CD-ROM / Utilities.
Includes the following:

DMCWINI16 Windows 3.x Terminal
DMCWIN32 Windows 95 /98 / NT Terminal
SETUP16 Setup Utility for Window 3.x
SETUP32 Setup Utility for Windows 95/98/NT
CKIT C-Programmers Kit
WSDK-16 Servo Design Kit for Windows 3.x
WSDK-32 Servo Design Kit for Windows 95 /98 / NT
VBX Tool Kit Visual Basic'" Tool Kit (includes VBXs and OCXs)
CAD-to-DMC AutoCAD" DXF translator
MCS Motion Control Selector. Utility for motor / amplifier sizing.
HPGL HPGL translator

192 o Appendices

DMC-2X00

ICM-2900 Interconnect Module

The ICM-2900 interconnect module provides easy connections between the Optima series controllers
and other system elements, such as amplifiers, encoders, and external switches. The ICM- 2900
accepts the 100-pin main cable and provides terminal blocks for connections. Each terminal is labeled
for quick connection of system elements. The ICM-2900 provides access to the signals for up to 4

axes (Two required for 5 or more axes).

Block (4 PIN) Label 110 Description

1 MOCMDZ o Z axis motor command to amp input (w / respect to
ground)

1 SIGNZ O Z axis sign output for input to stepper motor amp

1 PWMZ (6] Z axis pulse output for input to stepper motor amp

1 GND ¢ Signal Ground

2 MOCMDW (¢} W axis motor command to amp input (w / respect
to ground)

2 SIGNW (0] W axis sign output for input to stepper motor amp

2 PWMW (0] W axis pulse output for input to stepper motor amp

2 GND o Signal Ground

3 MOCMDX O X axis motor command to amp input (w / respect to
ground)

3 SIGNX (0] X axis sign output for input to stepper motor amp

3 PWMX (0] X axis pulse output for input to stepper motor amp

3 GND o Signal Ground

4 MOCMDY o Y axis motor command to amp input (w / respect to
ground)

4 SIGNY (0] Y axis sign output for input to stepper motor amp

4 PWMY (0] Y axis pulse output for input to stepper motor amp

4 GND o Signal Ground

5 OUT PWR I Isolated Power In for Opto-Isolation Option

5 ERROR (0] Error output

5 CMP (0] Circular Compare Output

5 OUT GND ¢ Isolated Ground for Opto-Isolation Option

6 AMPENW (0] W axis amplifier enable

6 AMPENZ (0] Z axis amplifier enable

6 AMPENY (0] Y axis amplifier enable

6 AMPENX (0] X axis amplifier enable

7 OUTS5 0] General Output 5

7 ouTe6 o General Output 6

7 ouT7 0] General Output 7

7 OUTS8 o General Output 8

8 OUT1 o General Output 1

8 OuUT2 o General Output 2

8 OouT3 ¢ General Output 3

DMC-2X00

Appendices ¢ 193

8 OouUT4 (0] General Output 4

9 +5V o + 5 volts

9 HOMEZ I Z axis home input

9 RLSZ I Z axis reverse limit switch input

9 FLSZ I Z axis forward limit switch input

10 LSCOM I Limit Switch Common Input

10 HOMEW I W axis home input

10 RLSW I W axis reverse limit switch input

10 FLSW I W axis forward limit switch input

11 HOMEX I X axis home input

11 RLSX I X axis reverse limit switch input

11 FLSX I X axis forward limit switch input

11 GND o Signal Ground

12 HOMEY I Y axis home input

12 RLSY I Y axis reverse limit switch input

12 FLSY I Y axis forward limit switch input

12 GND o Signal Ground

13 IN5S I Input 5

13 IN6 I Input 6

13 IN7 I Input 7

13 INS8 I Input 8

14 XLATCH I Input 1 (Used for X axis latch input)

14 YLATCH I Input 2 (Used for Y axis latch input)

14 ZLATCH I Input 3 (Used for Z axis latch input)

14 WLATCH I Input 4 (Used for W axis latch input)

15 +5V ¢ + 5 volts

15 +12V (0] +12 volts

15 -12v (0] -12 volts

15 ANA GND o Isolated Analog Ground for Use with Analog
Inputs

16 INCOM I Input Common For General Use Inputs

16 ABORT I Abort Input

16 RESET I Reset Input

16 GND o Signal Ground

17 ANALOGS | Analog Input 5

17 ANALOG6 | Analog Input 6

17 ANALOGT7 I Analog Input 7

17 ANALOGS8 I Analog Input 8

18 ANALOGI I Analog Input 1

18 ANALOG2 I Analog Input 2

18 ANALOG3 I Analog Input 3

18 ANALOG4 I Analog Input 4

194 o Appendices

DMC-2X00

19 +5V (0] + 5 volts

19 +INX I X Main encoder Index +
19 -INX I X Main encoder Index -
19 GND ¢ Signal Ground

20 +MAX I X Main encoder A+

20 -MAX I X Main encoder A-

20 +MBX I X Main encoder B+

20 -MBX I X Main encoder B-

21 +5V (¢} + 5 volts

21 +INY I Y Main encoder Index +
21 -INY I Y Main encoder Index -
21 GND o Signal Ground

22 +MAY I Y Main encoder A+

22 -MAY I Y Main encoder A-

22 +MBY I Y Main encoder B+

22 -MBY I Y Main encoder B-

23 +5V O + 5 volts

23 +INZ I Z Main encoder Index +
23 -INZ I Z Main encoder Index -
23 GND o Signal Ground

24 +MAZ I Z Main encoder A+

24 -MAZ I Z Main encoder A-

24 +MBZ I Z Main encoder B+

24 -MBZ I Z Main encoder B-

25 +5V (0] + 5 volts

25 +INW I W Main encoder Index +
25 -INW I W Main encoder Index -
25 GND ¢ Signal Ground

26 +MAW I W Main encoder A+

26 -MAW I W Main encoder A-

26 +MBW I W Main encoder B+

26 -MBW I W Main encoder B-

DMC-2X00

Appendices ¢ 195

ICM-2900 Drawing:

2.40"
mocvoz | (1[0 00 |mocmow
sienz | [I[] 00 |sienw
pwvz | [[] 00 [pwmw
ano |][] IRE)
mocmpx | [11] [l [mocmpy
sienx | [1] 00 [sieny
pwmx | [1[] 00 |pwmy
eno | [00 |eno
outpwr | [I[] 10 |ampenw
ERROR [0 |amPeENZ
cMP 1 10 |ampeny
outano |][] 00 [amPeENX
outs | [I[] 00 |outt
outs | [][] 00 |out2
ouT? ouTs
outs | [|{] UL [outa
v [00 00 |Lscom
womez | [0 000 o |
resz | O[] 00 |risw
resz | 00 00 [Frsw
Homex | [I[1 00 [Homey
rusx | UL UL [resy
Fusx | L[UL |FLsy
eno | L UL |eno
ins | 1] [[xcatcH 12.25"
ine | [][] O [yratcH
ani 00 |zLatcH
ins | UL UL |weatcH
+sv [0 00 |incom
+12V 1 0 [aBorT
-zv | [H[[reseT
anacno | [0 00 |eno
anacoas | [1[] 00 |anaLoci
ANALOG6 00 |anaLoc2
ANALOG7] 00 |anaLocs
anacoas | [{] O [anaLoca
+sv [0 00 [+max
«nx [00 00 |-max
anx | 00 U [+mex
ano |][] 00 |-mex
+sv [0 00 [+may
+iny | [[] 00 |-may
any | [00 |+mey
eno | UL UL |-mey
+sv [[0 00 |+maz
+inz | ([00 |-maz
anz | [00 |+msz
eno |][] 0 [-vsz
+sv [0 00 [+maw
«inw | [[] 00 [-maw
-nw [][] 0[[+mew
ano |][] 00 [-vsw
Figure A-1

275" >

240"

Holes for
mounting to DMC-
2000 (2 holes)

O

100 pin high

Solderless connections
— use screwdriver to
open contacts for
insertion/removal of
lead wires, part
replacement: PCD part
ELFF04240

density connector
AMP #2-178238-9

Side

Back

196 ¢ Appendices

DMC-2X00

ICM-2908 Interconnect Module

The ICM-2908 interconnect module provides easy connections between the auxiliary encoder
connections of the DMC-2x00 series controller and other system elements. The ICM-2908 accepts the
36 pin high density cable (CABLE-36) from the controller and provides terminal blocks for easy
access. Each terminal is labeled for quick connection. One ICM-1908 provides access to all of the
auxiliary encoders on a DMC-2x00 (up to 8 axes).

DMC-2X00 Appendices ¢ 197

ICM-2908 Drawing:
i- 2.40" ri i- 2.75" -‘ ’- 2.40" r‘

ICM-2908
Holes for
mounting to DMC-
/ 2000 (2 holes)
O 36 pin high density
connector
AMP #2-178238-5
Solderless 3M #10236-55-G3VC
connections -
insert screwdriver
to open contacts
for insertion/
removal of lead
+AAY ﬁ ﬁ +AAX i wires I
aay | [0 00 [-aax —
«aev | 10 00 [+asx
ey | 11 00 [-aex
+AAW W W +AAZ
-aaw (00 00 [-anz
wasw | [00 |+asz
aew | (11 [0 |-a8z
eno | 1[] g0 |+sv 12.25"
eno | [0 on [+sv
ono | [aQ [+sv
oo |0 00 [+sv L
+AAF W W +AAE
-ar | 11 00 [-aae B -
+asF | [0 00 [+ee
-eF [[00 |-aee
+AAH W W +AAG
-aaH [1]] 00 |-aae
+asH | [1[] 00 [+aee
-ash | [0 00 [-asc O
_ v
Front Side Back
Figure 4-2

198 e Appendices DMC-2X00

PCB Layout of the ICM-2900:

ANALOG
SWITCH

RP4

\
|

AMPLIFIER
ENABLE
BUFFER

:] ZEEXVIN |§

12V|

U6 RP1 * FOR 5 VOLT AMPLIFIER ENABLE -
U1 PLACE PIN 1 OF RP1 ON PIN LABELED
gy
* FOR 12 VOLT AMPLIFIER ENABLE -
PLACE PIN 1 OF RP1 ON PIN LABELED
iy

RP2 RP3 OPTIONAL OPTO-ISOLATION
CIRCUIT

100PIN HIGH DENSITY
CONNECTOR
AMP part # 2-178238-9

ICM-2900 BOARD LAYOUT

DMC-2X00 Appendices ¢ 199

ICM-1900 Interconnect Module

The ICM-1900 interconnect module provides easy connections between the DMC-2x00 series
controllers and other system elements, such as amplifiers, encoders, and external switches. The ICM-
1900 accepts the 100-pin main cable and 25-pin auxiliary cable and breaks them into screw-type
terminals. Each screw terminal is labeled for quick connection of system elements. An ICM-1900 is
required for each set of 4 axes. (Two required for DMC-2x50 thru DMC-2x80).

The ICM-1900 is contained in a metal enclosure. A version of the ICM-1900 is also available with
servo amplifiers (see AMP-19x0).

Features

® Separate DMC-2x00 cables into individual screw-type terminals

® (learly identifies all terminals

® Provides jumper for connecting limit and input supplies to 5 V supply from PC
® Available with on-board servo drives (see AMP-19X0)

® Can be configured for AEN high or low

NOTE: The part number for the 100-pin connector is #2-178238-9 from AMP

Terminal Label 110 Description
1 +AAX I X Auxiliary encoder A+
2 -AAX 1 X Auxiliary encoder A-
3 +ABX I X Auxiliary encoder B+
4 -ABX I X Auxiliary encoder B-
5 +AAY I Y Auxiliary encoder A+
6 -AAY I Y Auxiliary encoder A-
7 +ABY I Y Auxiliary encoder B+
8 -ABY I Y Auxiliary encoder B-
9 +AAZ I Z Auxiliary encoder A+
10 -AAZ I Z Auxiliary encoder A-
11 +ABZ I Z Auxiliary encoder B+
12 -ABZ I Z Auxiliary encoder B-
13 +AAW I W Auxiliary encoder A+
14 -AAW I W Auxiliary encoder A-
15 +ABW I W Auxiliary encoder B+
16 -ABW I W Auxiliary encoder B-
17 GND Signal Ground
18 +VCC + 5 volts
19 ISO OUT (0] Isolated Output Power(for use with the opto-isolated output
POWER option)
20 ERROR (0] Error signal
21 RESET I Reset
22 CMP (0] Circular Compare output
23 MOCMDW o W axis motor command to amp input (w / respect to ground)

200 e Appendices DMC-2X00

24 SIGNW o W axis sign output for input to stepper motor amp
25 PWMW o W axis pulse output for input to stepper motor amp
26 MOCMDZ o Z axis motor command to amp input (w / respect to ground)
27 SIGNZ o Z axis sign output for input to stepper motor amp
28 PWMZ o Z axis pulse output for input to stepper motor amp
29 MOCMDY o Y axis motor command to amp input (w / respect to ground)
30 SIGNY o Y axis sign output for input to stepper motor amp
31 PWMY o Y axis pulse output for input to stepper motor amp
32 MOCMDX (¢} X axis motor command to amp input (w / respect to ground)
33 SIGNX o X axis sign output for input to stepper motor amp
34 PWMX ¢} X axis pulse output for input to stepper motor amp
35 ISO OUT GND o Isolated Output Ground

36 +VCC (0] + 5 volts

37 AMPENW o W axis amplifier enable

38 AMPENZ o Z axis amplifier enable

39 AMPENY O Y axis amplifier enable

40 AMPENX o X axis amplifier enable

41 LSCOM I Limit Switch Common

42 HOMEW I W axis home input

43 RLSW 1 W axis reverse limit switch input

44 FLSW 1 W axis forward limit switch input

45 HOMEZ 1 Z axis home input

46 RLSZ I Z axis reverse limit switch input

47 FLSZ I Z axis forward limit switch input

48 HOMEY I Y axis home input

49 RLSY 1 Y axis reverse limit switch input

50 FLSY 1 Y axis forward limit switch input

51 HOMEX 1 X axis home input

52 RLSX I X axis reverse limit switch input

53 FLSX I X axis forward limit switch input

54 +VCC + 5 volts

55 GND Signal Ground

56 INCOM I Input common (Common for general inputs and Abort input)
57 XLATCH I Input 1 (Used for X axis latch input)

58 YLATCH I Input 2 (Used for Y axis latch input)

59 ZLATCH I Input 3 (Used for Z axis latch input)

60 WLATCH 1 Input 4 (Used for W axis latch input)

61 INS I Input 5

62 IN6 I Input 6

63 IN7 I Input 7

64 IN8 I Input 8

65 ABORT I Abort Input

DMC-2X00 Appendices ¢ 201

66 OUT1 (0] Output 1

67 OUT2 (¢} Output 2

68 OUT3 (0] Output 3

69 ouT4 (0] Output 4

70 OUTS (0] Output 5

71 OouT6 (0] Output 6

72 OuT7 (0] Output 7

73 OUT8 (0] Output 8

74 GND Signal Ground

75 AN1 I Analog Input 1

76 AN2 I Analog Input 2

77 AN3 I Analog Input 3

78 AN4 I Analog Input 4

79 ANS I Analog Input 5

80 ANG6 I Analog Input 6

81 AN7 I Analog Input 7

82 ANS I Analog Input 8

83 +MAX I X Main encoder A+

84 -MAX I X Main encoder A-

85 +MBX I X Main encoder B+

86 -MBX 1 X Main encoder B-

87 +INX I X Main encoder Index +
88 -INX 1 X Main encoder Index -
89 ANA GND Analog Ground

90 +VCC + 5 volts

91 +MAY I Y Main encoder A+

92 -MAY I Y Main encoder A-

93 +MBY I Y Main encoder B+

94 -MBY I Y Main encoder B-

95 +INY I Y Main encoder Index +
96 -INY I Y Main encoder Index -
97 +MAZ I Z Main encoder A+

98 -MAZ 1 Z Main encoder A-

99 +MBZ I Z Main encoder B+

100 -MBZ 1 Z Main encoder B-

101 +INZ 1 Z Main encoder Index +
102 -INZ I Z Main encoder Index -
103 GND Signal Ground

104 +VCC + 5 volts

105 +MAW I W Main encoder A+
106 -MAW I W Main encoder A-
107 +MBW I W Main encoder B+

202 « Appendices

DMC-2X00

108 -MBW 1 W Main encoder B-

109 +INW 1 W Main encoder Index +
110 -INW 1 W Main encoder Index -
111 +12V +12 volts

112 -12V -12 volts

ICM-1900 Drawing:

13.500"
12.560" .
_ 11.620" _ 1020
= = |||
1 ‘ ‘
/ /
=
0.440"
oo
o |
w0 |O&
© |«
IE
s 7 3
< N o~
©
Figure A-3

AMP-19x0 Mating Power Amplifiers

The AMP-19x0 series are mating, brush-type servo amplifiers for the DMC-2x00. The AMP-1910
contains 1 amplifier: the AMP-1920, 2 amplifiers; the AMP-1930, 3 amplifiers; and the AMP-1940, 4
amplifiers. Each amplifier is rated for 7 amps continuous, 10 amps peak at up to 80 V. The gain of the
AMP-19x0 is 1 amp/V. The AMP-19x0 requires an external DC supply. The AMP-19x0 connects
directly to the DMC-2x00, and screw type terminals are provided for connection to motors, encoders,
and external switches.

Features
® 7 amps continuous, 10 amps peak; 20 to 80V
® Available with 1, 2, 3, or 4 amplifiers

® Connects directly to DMC-2x00 series controllers

DMC-2X00

Appendices ¢ 203

® Screw-type terminals for easy connection to motors, encoders, and switches

® Steel mounting plate with ¥4” keyholes

Specifications

Minimum motor inductance: 1 mH

PWM frequency: 30 kHz

Ambient operating temperature: 0°to 70° C
Dimensions:

Weight:

Mounting: Keyholes — /4>

Gain: 1 amp/V

Opto-Isolated Outputs for ICM-2900 / ICM-1900 / AMP-

19x0

The ICM/AMP 1900 and ICM-2900 modules from Galil have an option for opto-isolated outputs.

Standard Opto-Isolation and High Current Opto-isolation:

The Opto-isolation option on the ICM-1900 has 2 forms: -opto (standard) and -optohc (high current).
The standard version provides outputs with 4ma drive current / output with approximately 2 usec
response time. The high current version provides 25ma drive current / output with approximately 400
usec response time.

FROM ICM-1900 / ICM-2900
CONTROLLER CONNECTIONS

+5V

ISO OUT POWER (ICM-1900,PIN 19)
OUT POWER (ICM-2900)

RP4=10K OHMS

OUT[x] (66 - 73)

e
- Ii 1SO POWER GND (ICM-1900,PIN 35)

OUT GND (ICM-2900)

OUT[x] TTL

Figure 4-4

The ISO OUT POWER (OUT POWER ON ICM-2900) and ISO POWER GND (OUT GND ON ICM-
2900) signals should be connected to an isolated power supply. This power supply should be used
only to power the outputs in order to obtain isolation from the controller. The signal "OUT[x]" is one
of the isolated digital outputs where X stands for the digital output terminals.

The default configuration is for active high outputs. If active low outputs are desired, reverse RP3 in
it's socket. This will tie RP3 to GND instead of VCC, inverting the sense of the outputs.

NOTE: If power is applied to the outputs with an isolated power supply but power is not applied to the
controller, the outputs will float high (unable to sink current). This may present a problem when using
active high logic and care should be taken. Using active low logic should avoid any problems
associated with the outputs floating high.

204 « Appendices DMC-2X00

Configuring the Amplifier Enable for ICM-2900 / ICM-

1900

The ICM-1900 and ICM-2900 modules can be configured to provide an active low signal to enable
external amplifiers. These modules can also be configured for voltage levels other than TTL.

-LAEN Option:

The standard configuration of the AEN signal is TTL active high. In other words, the AEN signal will
be high when the controller expects the amplifier to be enabled. The polarity can be changed when
using a Galil Interconnect Module. To change the polarity from active high (5 volts = enable, zero
volts = disable) to active low (zero volts = enable, 5 volts = disable), replace the socketed IC, 7407,
with a 7406. These IC’s are labeled U6 on the ICM-1900 and U2 on the ICM-2900 and can be
accessed by removing the cover. This option can be requested when ordering the unit by specifying
the -LAEN option.

-Changing the Amplifier Enable Voltage Level:

To change the voltage level of the AEN signal, note the state of the resistor pack, labeled RP1 on the
ICM-1900 / ICM-2900. When Pin 1 is on the 5V mark, the output voltage is 0-5V. To change to 12
volts, pull the resistor pack and rotate it so that Pin 1 is on the 12 volt side. If you remove the resistor
pack, the output signal is an open collector, allowing the user to connect an external supply with
voltages up to 24V.

DMC-2000 ICM-1900 / ICM-2900

Connection to +5V or +12V made through
Resistor pack RP1. Removing the resistor pack
allows the user to connect their own resistor to
the desired voltage level (Up to24V). Accessed
by removing ICM cover.

AMPENX SERVO MOTOR
AMPLIFIER
GND
100-PIN
HIGH
DENSITY
CABLE 7407 Open Collector

Buffer. The Enable signal
can be inverted by using a
7406. Accessed by

removing ICM-2900 cover.

Figure A-5

DMC-2X00

Appendices ¢ 205

IOM-1964 Opto-lsolation Module for Extended 1/0

Description:

e Provides 64 optically isolated inputs and outputs, each rated for 2mA at up to 28 VDC

e Configurable as inputs or outputs in groups of eight bits

e Provides 16 high power outputs capable of up to SO0mA each

e Connects to controller via 80 pin shielded cable

e AllI/O points conveniently labeled
e Each of the 64 I/O points has status LED

e Dimensions 6.8”x 11.4”

High Current
Buffer chips (16)

Screw Terminals

-

3 4 5

INNRNERNNERED

|I0M-1964
REV A
GALIL MOTION CONTROL
MADE IN USA

FOR INPUTS: FOR OUTPUTS:

[]
[]

1l)

UX3 uxi1
UX4 Ux2
RPX4 RPX2

RPX3

Banks 0 and 1

provide high
power output
capability.
Figure A-6
Overview

\ 80 pin high

density connector

Banks 2-7 are
standard banks.

The IOM-1964 is an input/output module that connects to the motion controller cards from Galil,
providing optically isolated buffers for the extended inputs and outputs of the controller. The IOM-
1964 also provides 16 high power outputs capable of S00mA of current per output point. The IOM-
1964 splits the 64 1/0 points into eight banks of eight I/O points each, corresponding to the eight banks

206 ¢ Appendices

DMC-2X00

of extended I/O on the controller. Each bank is individually configured as an input or output bank by
inserting the appropriate integrated circuits and resistor packs. The hardware configuration of the
IOM-1964 must match the software configuration of the controller card.

All DMC-2x00 series controllers have general purpose I/O connections. On a DMC-2x10, -2x20, -
2x30, and -2x40 the standard uncommitted I/O consists of: eight optically isolated digital inputs, eight
TTL digital outputs, and eight analog inputs.

The DMC-2x00, however, has an additional 64 digital input/output points than the 16 described above
for a total of 80 input/output points. An 80 pin shielded cable connects from the 80 pin connector of
the DMC-2x00 to the 80 pin high density connector on the IOM-1964 (J1). Illustrations for this
connection can be found on pages 10 and 11.

Configuring Hardware Banks

The extended I/O on the DMC-2x00 is configured using the CO command. The banks of buffers on
the IOM-1964 are configured to match by inserting the appropriate IC’s and resistor packs. The layout
of each of the I/O banks is identical.

For example, here is the layout of bank 0:

Resistor Pack for

outputs
\4 ‘RP03 ouT |
Resistor Pack for]
m 1,
inputs 3 uo3 uo4 Input Buffer IC's
S
z /
IN
Resistor Pack for
outputs L
] Output Buffer IC's
z Uo1 u02 P
Y 8 /
2
— ouT
Indicator LED's
r'd Resistor Pack for
Do LED's
g
D \ \
C6 F NOOOT AN MY
S -~ NANNANN
RP0O10O
Bank 0
Figure A-7

All of the banks have the same configuration pattern as diagrammed above. For example, all banks
have Ux1 and Ux2 output optical isolator IC sockets, labeled in bank 0 as U0O1 and U02, in bank 1 as
Ul1 and U12, and so on. Each bank is configured as inputs or outputs by inserting optical isolator
IC’s and resistor packs in the appropriate sockets. A group of eight LED’s indicates the status of each

DMC-2X00

Appendices ¢ 207

I/0 point. The numbers above the Bank 0 label indicate the number of the I/O point corresponding to
the LED above it.

Digital Inputs

Configuring a bank for inputs requires that the Ux3 and Ux4 sockets be populated with NEC2505
optical isolation integrated circuits. The IOM-1964 is shipped with a default configuration of banks 2-
7 configured as inputs. The output IC sockets Ux1 and Ux2 must be empty. The input IC’s are labeled
Ux3 and Ux4. For example, in bank 0 the IC’s are U03 and U04, bank 1 input IC’s are labeled U13
and Ul4, and so on. Also, the resistor pack RPx4 must be inserted into the bank to finish the input
configuration.

Input Circuit
nput Circui Voc,

1/4 NEC2505 1/8 RPx4

To DMC-1748* 1/0O x = bank number 0-7

n = input number 17-80

DMC-1748* GND

I/0

Figure 4-8

Connections to this optically isolated input circuit are done in a sinking or sourcing configuration,
referring to the direction of current. Some example circuits are shown below:

Sinking Sourcing
|/OCn ® e +5V |/OCn R — . L C1)\[D)
Vo, &~ GND JO, &= @ 45V
——Current—» <«—Current—

Figure A-9

There is one I/OC connection for each bank of eight inputs. Whether the input is connected as sinking
or souring, when the switch is open no current flows and the digital input function @IN[n] returns 1.
This is because of an internal pull up resistor on the DMC-2x40*. When the switch is closed in either
circuit, current flows. This pulls the input on the DMC-2x40 to ground, and the digital input function
@IN[n] returns 0. Note that the external +5V in the circuits above is for example only. The inputs are
optically isolated and can accept a range of input voltages from 4 to 28 VDC.

Active outputs are connected to the optically isolated inputs in a similar fashion with respect to current.
An NPN output is connected in a sinking configuration, and a PNP output is connected in the sourcing
configuration.

208 ¢ Appendices DMC-2X00

High

To DMC-2x40 +5V

DMC-2x40 I/O @

Sinking Sourcing

I/IOC, &———=e +5v I/OC, «——————— GND
I/On e @ NPN |/On Y Pl\iP t
—Current—» output <+—Current— outpu

Figure A-10

Whether connected in a sinking or sourcing circuit, only two connections are needed in each case.
When the NPN output is 5 volts, then no current flows and the input reads 1. When the NPN output
goes to 0 volts, then it sinks current and the input reads 0. The PNP output works in a similar fashion,
but the voltages are reversed i.e. 5 volts on the PNP output sources current into the digital input and the
input reads 0. As before, the 5 volt is an example, the I/OC can accept between 4-28 volts DC.

Note that the current through the digital input should be kept below 3 mA in order to minimize the
power dissipated in the resistor pack. This will help prevent circuit failures. The resistor pack RPx4 is
standard 1.5k ohm which is suitable for power supply voltages up to 5.5 VDC. However, use of 24
VDC for example would require a higher resistance such as a 10k ohm resistor pack.

*The 1-4 axis models of the DMC-2x00 all work with the IOM-1964, all have identical extended I/O
features.

Power Digital Outputs

The first two banks on the [OM-1964, banks 0 and 1, have high current output drive capability. The
IOM-1964 is shipped with banks 0 and 1 configured as outputs. Each output can drive up to 500mA of
continuous current. Configuring a bank of I/O as outputs is done by inserting the optical isolator
NEC2505 IC’s into the Ux1 and Ux2 sockets. The digital input IC’s Ux3 and Ux4 are removed. The
resistor packs RPx2 and RPx3 are inserted, and the input resistor pack RPx4 is removed.

Each bank of eight outputs shares one I/OC connection, which is connected to a DC power supply
between 4 and 28 VDC. A 10k ohm resistor pack should be used for RPx3. Here is a circuit diagram:

e l/OC,
1/4 NEC2505
18 RPX2> |———————— ——

|
| IR6210
[A
' / vCce
l v &
| IN OUT|—e pwROUT,
1
__________ GND

e 10,

l e OUTC,

Figure A-11

The load is connected between the power output and output common. The I/O connection is for test
purposes, and would not normally be connected. An external power supply is connected to the I/OC
and OUTC terminals, which isolates the circuitry of the DMC-2x40 controller from the output circuit.

DMC-2X00

Appendices ¢ 209

ioc, e v

IS0
PWROUT, ‘7pr

i L External

g|o _ | + Isolated

::3 a ' Power

| d Supply

ouTC, Q—E GNDyso

Figure A-12

The power outputs must be connected in a driving configuration as shown on the previous page. Here
are the voltage outputs to expect after the Clear Bit and Set Bit commands are given:

Output Command Result
CBn prr = Viso
SB, Vpwr = GNDijgo

Standard Digital Outputs

The 1/0 banks 2-7 can be configured as optically isolated digital outputs; however these banks do not
have the high power capacity as in banks 0-1. In order to configure a bank as outputs, the optical
isolator chips Ux1 and Ux2 are inserted, and the digital input isolator chips Ux3 and Ux4 are removed.
The resistor packs RPx2 and RPx3 are inserted, and the input resistor pack RPx4 is removed.

Each bank of eight outputs shares one I/OC connection, which is connected to a DC power supply
between 4 and 28 VDC. The resistor pack RPx3 is optional, used either as a pull up resistor from the
output transistor’s collector to the external supply connected to I/OC or the RPx3 is removed resulting
in an open collector output. Here is a schematic of the digital output circuit:

Internal Pullup

l/oc,
To DMC-2x40 +5V 1/8 RPx3
1/4 NEC2505
1/8 RPx2 |————————— L
| | e 10,

|

e

| ya |

: v & |

!
!

!

DMC-2x40 I/0 ® . L

® 0OUTC,

Figure A-13

210 « Appendices DMC-2X00

The resistor pack RPx3 limits the amount of current available to source, as well as affecting the low
level voltage at the 1/0 output. The maximum sink current is 2mA regardless of RPx3 or I/OC voltage,
determined by the NEC2505 optical isolator IC. The maximum source current is determined by
dividing the external power supply voltage by the resistor value of RPx3.

The high level voltage at the I/O output is equal to the external supply voltage at /OC. However,
when the output transistor is on and conducting current, the low level output voltage is determined by
three factors. The external supply voltage, the resistor pack RPx3 value, and the current sinking limit
of the NEC2505 all determine the low level voltage. The sink current available from the NEC2505 is
between 0 and 2mA. Therefore, the maximum voltage drop across RPx3 is calculated by multiplying
the 2mA maximum current times the resistor value of RPx3. For example, if a 10k ohm resistor pack
is used for RPx3, then the maximum voltage drop is 20 volts. The digital output will never drop below
the voltage at OUTC, however. Therefore a 10 kQ resistor pack will result in a low level voltage of
0.7 to 1.0 volts at the I/O output for an external supply voltage between 4 and 21 VDC. If a supply
voltage greater than 21 VDC is used, a higher value resistor pack will be required.

Output Command Result
CBn Vout = GNDiso
SB, Vout = Viso

The resistor pack RPx3 is removed to provide open collector outputs. The same calculation for
maximum source current and low level voltage applies as in the above circuit. The maximum sink
current is determined by the NEC2505, and is approximately 2mA.

Open Collector

To DMC-2x40 +5V

1/4 NEC2505
1/8 RPx2 |————————————— =

e 10,

DMC-2x401/0 ®

® OUTC,

Figure A-14

Electrical Specifications

e I/O points, configurable as inputs or outputs in groups of 8

Digital Inputs
e Maximum voltage: 28 VDC
e Minimum input voltage: 4 VDC

e Maximum input current: 3 mA

DMC-2X00 Appendices * 211

High Power Digital Outputs

Maximum external power supply voltage: 28 VDC
Minimum external power supply voltage: 4 VDC
Maximum source current, per output: S00mA

Maximum sink current: sinking circuit inoperative

Standard Digital Outputs

Maximum external power supply voltage: 28 VDC
Minimum external power supply voltage: 4 VDC
Maximum source current: limited by pull up resistor value

Maximum sink current: 2mA

Relevant DMC Commands

COn Configures the 64 bits of extended I/O in 8 banks of 8 bits each.
N =n, + 2*n; + 4*n,4 + 8*ns5 + 16*ng + 32*n; + 64*ng + 128%n,
where n, is a 1 or 0, 1 for outputs and 0 for inputs. The x is the bank number
0) m = § standard digital outputs
m,n,0,p,q n = extended /O banks 0 & 1, outputs 17-32
o = extended /O banks 2 & 3, outputs 33-48
p = extended I/O banks 4 & 5, outputs 49-64
q = extended I/O banks 6 & 7, outputs 65-80
SB n Sets the output bit to a logic 1, n is the number of the output from 1 to 80.
CBn Clears the output bit to a logic 0, n is the number of the output from 1 to 80.
OB n,m Sets the state of an output as 0 or 1, also able to use logical conditions.
TIn Returns the state of 8 digital inputs as binary converted to decimal, n is the bank number +2.
_TIn Operand (internal variable) that holds the same value as that returned by TI n.
@IN[n] Function that returns state of individual input bit, n is number of the input from 1 to 80.

Screw Terminal Listing

TERM LABEL DESCRIPTION BANK
1 GND Ground pins of J1 N/A

2 5V 5V DC out from J1 N/A

3 GND Ground pins of J1 N/A

4 5V 5V DC out from J1 N/A

5 /080 I/O bit 80 7

6 /079 I/O bit 79 7

7 /078 I/O bit 78 7

8 /077 /O bit 77 7

9 /076 /O bit 76 7

10 /075 /O bit 75 7

212 « Appendices DMC-2X00

11 /074 I/O bit 74 7
12 /073 /O bit 73 7
13 OUTC73-80 Out common for I/0 73-80 7
14 [/0C73-80 I/O common for 1/0 73-80 7
15 /072 I/O bit 72 6
16 /071 /O bit 71 6
17 /070 I/O bit 70 6
18 /069 I/O bit 69 6
19 /068 I/O bit 68 6
20 /067 /O bit 67 6
21 /066 /O bit 66 6
22 1/065 I/0 bit 65 6
23 OUTC65-72 Out common for I/O 65-72 6
24 [/0C65-72 I/O common for I/0 65-72 6
25 /064 I/O bit 64 5
26 /063 I/O bit 63 5
27 /062 I/O bit 62 5
28 /061 /O bit 61 5
29 /060 /O bit 60 5
30 /059 I/O bit 59 5
31 /058 I/O bit 58 5
32 /057 /O bit 57 5
33 OUTC57-64 Out common for I/0 57-64 5
34 [/0C57-64 I/O common for I/0O 57-64 5
35 /056 I/O bit 56 4
36 /055 I/O bit 55 4
37 /054 I/O bit 54 4
38 /053 I/O bit 53 4
39 /052 I/O bit 52 4
40 /051 /O bit 51 4
41 /050 I/O bit 50 4
42 1/049 I/O bit 49 4
43 *OUTC49-56 Out common for I/O 49-56 4
44 1/0C49-56 I/0O common for I/0 49-56 4
45 1/048 I/O bit 48 3
46 1/047 I/0 bit 47 3
47 /046 I/O bit 46 3
48 /045 I/O bit 45 3
49 /044 I/O bit 44 3
50 1/043 I/0O bit 43 3
51 /042 I/O bit 42 3
52 /041 I/O bit 41 3

DMC-2X00

Appendices ¢ 213

53 OUTC41-48 Out common for I/O 41-48 3
54 [/0C41-48 I/O common for I/O 41-48 3
55 /040 I/O bit 40 2
56 /039 I/O bit 39 2
57 /038 I/O bit 38 2
58 /037 I/O bit 37 2
59 /036 1/O bit 36 2
60 1/035 I/0O bit 35 2
61 /034 I/O bit 34 2
62 /033 I/O bit 33 2
63 OUTC33-40 Out common for I/0 33-40 2
64 [/0C33-40 I/0O common for I/0 33-40 2
65 /032 I/O bit 32 1
66 /031 I/O bit 31 1
67 /030 I/O bit 30 1
68 /029 I/O bit 29 1
69 /028 I/O bit 28 1
70 /027 I/O bit 27 1
71 1/026 1/O bit 26 1
72 /025 /O bit 25 1
73 OUTC25-32 Out common for I/O 25-32 1
74 *[/0C25-32 I/O common for I/O 25-32 1
75 *OUTC25-32 Out common for I/0 25-32 1
76 [/0C25-32 I/O common for I/0 25-32 1
77 PWROUT32 Power output 32 1
78 PWROUTS31 Power output 31 1
79 PWROUT30 Power output 30 1
80 PWROUT29 Power output 29 1
81 PWROUT28 Power output 28 1
82 PWROUT27 Power output 27 1
83 PWROUT26 Power output 26 1
84 PWROUT25 Power output 25 1
85 /024 I/O bit 24 0
86 /023 /O bit 23 0
87 /022 I/O bit 22 0
88 /021 I/O bit 21 0
89 /020 I/O bit 20 0
90 /019 /O bit 19 0
91 /018 I/O bit 18 0
92 /017 /O bit 17 0
93 OUTC17-24 Out common for /O 17-24 0
94 *[/0OC17-24 I/O common for I/O 17-24 0
214 o Appendices DMC-2X00

95 *OUTC17-24 Out common for I/0 17-24 0
96 [/0C17-24 I/0O common for /O 17-24 0
97 PWROUT24 Power output 24 0
98 PWROUT23 Power output 23 0
99 PWROUT22 Power output 22 0
100 PWROUT21 Power output 21 0
101 PWROUT20 Power output 20 0
102 PWROUT19 Power output 19 0
103 PWROUTI18 Power output 18 0
104 PWROUT17 Power output 17 0

¢ Silkscreen on Rev A board is incorrect for these terminals.

NOTE: The part number for the 100-pin connector is #2-178238-9 from AMP.

CB-50-100 Adapter Board

The CB-50-100 adapter board can be used to convert the CABLE-100 to (2) 50 Pin Ribbon Cables.
The 50 Pin Ribbon Cables provide a versatile method of accessing the controller signals without the

use of a Galil Interconnect Module.

Connectors:
JC8 50 PIN IDC J9 100 PIN HIGH DENSITY CONNECTOR
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
DMC-2X00 Appendices ® 215

21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46
47 47
48 48
49 49
50 50

216 ¢ Appendices

DMC-2X00

JC6 50 PIN IDC J9 100 PIN HIGH DENSITY CONNECTOR
1 51
2 52
3 53
4 54
5 55
6 56
7 57
8 58
9 59
10 60
11 61
12 62
13 63
14 64
15 65
16 66
17 67
18 68
19 69
20 70
21 71
22 72
23 73
24 74
25 75
26 76
27 77
28 78
29 79
30 80
31 81
32 82
33 83
34 84
35 85
36 86
37 87
38 88
39 89
40 90
41 91
42 92
43 93
44 94

DMC-2X00

Appendices ¢ 217

45 95
46 96
47 97
48 98
49 99
50 100

CB-50-100 Drawing:

| Y [Py
& 15/16' o 11 o

+ 1/8"D, 4 places
18" /
O O Mounting
- g bracket
CB 50-100 for attaching
REV A inside PC
GALIL MOTION
CONTROL [
MADE IN USA
Jo
JC6, JC8 - 50 pin
shrouded headers w/
Jc8 JC6 center key
1/51 JC8 - pins 1-50 of J9
JC6 - pins 51-100 of J9
J9 - 100 pin connector
AMP part # 2-178238-9
41/2"
21/71
41/91
—| O O
1/8"
v
}47 1/2"4+79/1 6" ———»
1 1‘/4"
Figure A-15

218 ¢ Appendices DMC-2X00

JCB8 (IDC 50 Pin)
Pin1 (2.975", 0.6125")

JC6 (IDC 50 Pin)
Pin1 (2.975", 0.9875")

JC6, JC8 - 50 pin
shrouded headers w/
center key

JC8 - pins 1-50 of J9
JCB6 - pins 51-100 of J9

/ 1/8"D, 4 places
CB 50-100

REV A J9 - 100 pin connector
GALIL MOTION AMP part # 2-178238-9
CONTROL J9 (Pin 1)

DETAIL

2 O 52
Ol =0
o O
O O
O
O O

-

O

Jcs JC6

O O,

OO O0OO0OO0OO0OO0ODOO0O0OOOOOLOLOOOLOLLOLOOOO
OO OO O0OO0OO0OOO0OO0OOOOOOOOOLOOOOOO
OO0 O0OO0OO0OO0OO0OO0OO0O0OO0OO0OOOOOOOOOOOO
OO O0OO0OO0OO0OO0ODOO0O0OOOOOLOLOOOLOLLOLOOOO

[eXeReReNoNoNeNoReRo NN R Roo o NoNeNoNoNoNoNoNo oo NoNoNoNoNoNoNoNoNo oo NoRo Ne o NoNoNoNo NoRoNoNeIN6]
[eleNeNeNelecNeNoNeNoNoNeNeNeRoNeNoNeNoNeRoNe oo Neo o NeNoNeoloNeNe e NolNoNe o Ne oMo oo Ne e oMo No e Xo o]
000000000000 O0O0OO0OO0OO0O0DODOOU0O0ODODODOOODOOOOOOOOODOODOOOOOOOOO
Q0000000000000 0000000O00D0000000O0OO0O0O000OO0OO000000OO0OO0OO0O0OO0O0O0

O

O

Figure A-16

CB-50-80 Adapter Board

The CB-50-80 adapter board can be used to convert the CABLE-80 to (2) 50 Pin Ribbon Cables. The
50 Pin Ribbon Cables provide a versatile method of accessing the extended 1/O signals without the use
of the Galil IOM-1964.

The ribbon cables provided by the CB-50-80 are compatible with /O mounting racks such as Grayhill
70GRCM32-HL and OPTO-22 G4PB24.

When using the OPTO-22 G4PB24 I/0 mounting rack, the user will only have access to 48 of the 64
I/O points available on the controller. Block 5 and Block 9 must be configured as inputs and will be
grounded by the I/O rack.

DMC-2X00

Appendices ¢ 219

Connectors:

JC8 and JC6: 50 Pin Male IDC
J9: 80 Pin High Density Connector, AMP PART #3-178238-0

JC8 J9 JC8 J9

1 1 38 GND
2 2 39 35

3 3 40 GND
4 4 41 36

5 5 42 GND
6 6 43 37

7 7 44 GND
8 8 45 38

9 9 46 GND
10 10 47 39

11 11 48 GND
12 12 49 +5V
13 13 50 GND
14 14

15 15

16 16

17 17

18 GND

19 19

20 GND

21 21

22 GND

23 23

24 GND

25 25

26 GND

27 27

28 GND

29 29

30 GND

31 31

32 GND

33 32

34 GND

35 33

36 GND

37 34

220 « Appendices

DMC-2X00

JC6

J9 (Continued)

1 41
2 42
3 43
4 44
5 45
6 46
7 47
8 48
9 49
10 50
11 51
12 52
13 53
14 54
15 55
16 56
17 57
18 GND
19 59
20 GND
21 61
22 GND
23 63
24 GND
25 65
26 GND
27 67
28 GND
29 69
30 GND
31 71
32 GND
33 72
34 GND
35 73
36 GND
37 74
38 GND
39 75
40 GND
41 76
42 GND
43 77
44 GND
45 78
46 GND
47 79
48 GND
49 +5V
50 GND

DMC-2X00

Appendices e 221

CB-50-80 Drawing:

CB-50-80 Outline

18"

}4&»‘ ‘ F/ 1/8"D, 4 places

A
O CB 50-80 O Mounting bracket
1/8" REV A1 for .attaching
GALIL MOTION — inside PC
CONTROL
MADE IN USA yg JC6, JC8 - 50 pin
shrouded headers w/
JC8 JC6 :[l/ center key
JC8 - pins 1-50 of J9
JCB6 - pins 51-100 of J9
J9 - 80 pin connector
3M part # N10280-52E2VC
AMP part # 3-178238-0
41/2"
Pl NORNNN®
\ 1/8 L
T
t f1/2"ﬂ 9/16"
11/4" -
Figure A-17

222 o Appendices

DMC-2X00

JC6 (IDC 50 Pin)
Pin1 ()

JC8 (IDC 50 Pin)
Pin1 ()

JC6, JC8 - 50 pin
shrouded headers w/
center key

Figure A-18

CB-50-80 Layout

O

<

CcB

50-80

REV A

GALIL MOTION

CONTROL
MADE IN USA

2]
o

OO0 O0OO0O0OO0ODOO0OO0OOOOOOOOOOOOOOO
O0O00O0O0O000OO0OO0OO0OOOOOOOOOOOO0

OO0OO0O0O0O0O0O0O0O0OOO0OOOOODOOOOOOO

OO0 00000000 OLObOOOOOOObOODOOOO

O

O

O

0000000000000 DOOOOOOOOOODODOOOOOOO0ODOOOOOODOOOODO
O0000000000000O0O0O0OO0DO0OD0DO0OO0O0OO0O0O0O0OO0ODOODOOOO0OOOOO0O0ODOODO0O0O

0000000000000 DOOOOOOOOOODODOOODOOOOO0OOOOO0DOOOOOOO
Q0000000000000 0O0O0O0ODO0O0OO0ODOO0OO0OO0O00O0OODOO0OOODO0OO0OOO0O0O0OO0OO0O0O0Q

-

3

o, O

O

1/8"D, 4 places

J9 - 80 pin connector
AMP part # 3-178238-0
(Pin 1)

DETAIL

ozq;“
o~ 0
0
o~ 0

DMC-2X00

Appendices e 223

TERM-1500 Operator Terminal

Two types of terminals are offered from Galil; the hand-held unit and the panel mount unit. Both have
the same programming characteristics.

Hand held unit is shown below:

0.56 o, 1.50

0.45

LOGO TAG AREA DIMENSION

Figure A-19

4.10

2.98

CENTERED

3.70

0.47

2.60

CENTERED
3.55

[T

Prr]

1.10

224 « Appendices

DMC-2X00

The panel mount terminal is shown below:

8-32 X .25 (8) PLACES 5.05
% 5.30 ~ 1.60 = 154 99
o o o]
®] 5] [
o000 +
o 0%o %
o O o O 0.93
O 05,0 O
229% f
7.000
— 1o ® @O|6.57 7.57 EDG %—]
Il [[[T
491 F3 .\. 2.58
3.500 |
o e 5] -DCLQJ
A ® L 1‘«}30
© 0 - i
- 5833 — -~ 50
5.667 - 140 — 17 370
Figure A-20
Features
B For easy data entry to DMC-2x00 motion controller
B 4 line x 20 character Liquid Crystal Display
® Full numeric keypad
B Five programmable function keys
B Available in Hand-held or Panel Mount
B No external power supply required
® Connects directly to RS232 port P2 via coiled cable
Description
The TERM-2000 is a compact ASCII terminal for use with the DMC-2x00 motion controller. Its
numeric keypad allows easy data entry from an operator. The TERM-1500 is available with a male
adapter for connection to P2 (Dataset).
NOTE: Since the TERM-1500 requires +5V on pin 9 of RS-232, it can only work with port 2 of the
DMC-2x00.
Specifications - Hand-Held
Keypad Key Tactile 4 row x Scharacter
Display LCD with 5 by 7 character font
Power 5 volts, 30mA (from DMC-2x00)
DMC-2X00 Appendices e 225

Specifications - Panel Mount

Keypad 30-Key; 5 rows x 6 columns ; 5x7 font
Display 4 row x 20 character LCD
Power 5 volts, 30mA

Keypad Maps - Hand-Held
30 Keys: 5 keys across, 6 down

Single Key Output
6 F1(22) | F2(23) | F3(24) | F4(25) | F5(26)
5 1 2 3
4 4 5 6
3 7 8 9
2 0
1 CTRL | SHIFT | SPACE | BKSPC | ENTER
Shift Key Output
6 A B C D E
5 F G H I]
4 K L M N o)
3 P Q R S T
2 8] \Y w X Y
1 CTRL | SHIFT Z , ?
CTRL Key Output
6 (18) (16)) 4 a7
5 (19) 2 ! “ %
4 * + / $;
3 < > \ []
2 " - @ { }
1 CTRL | SHIFT | ESC = #

NOTE: Values in parentheses are ASCII decimal values. Key locations are represented by [m,n]
where m is element column, n is element row.

Example:
U is <Shift>[1,2]

226 ¢ Appendices DMC-2X00

is <Cntrl>[5,1]

Keypad Map - Panel Mount — 6 columns x 5 rows

Single Key Output
5 Fl 1 2 3
4 F2 4 5 6
3 F3 7 8 9
2 F4 - 0
1 F5 CTRL | SHIFT | SPACE | BKSPC | ENTER
Shift Key Output
5 A F G H I]
4 B K L M N 0
3 C P Q R S T
2 D U \ W X Y
1 E CTRL | SHIFT zZ , ?
CTRL Key Output
5 (18) (19)) ! «“ %
4 (16) * - / $;
3 9) < > \ []
2 “4) " - @ { }
1 (17 | CTRL | SHIFT | ESC = #

NOTE: Values in parentheses are ASCII decimal values. Key locations are represented by [m,n]
where m is element column, n is element row.

Escape Commands

Escape codes can be used to control the TERM-1500 display, cursor style, and position, and sound
settings.

NOTE: The escape character (hex 1B) can be sent through port 2 of the DMC-2x00 with special
syntax {"27}:

Example: MG {P2}{*27},”H” Sends escape H to the terminal from port 2

Cursor Movement Commands

ESCA Cursor Up
ESCB Cursor Down
ESCC Cursor Right
ESCD Cursor Left

DMC-2X00

Appendices e 227

Erasing Display

ESCE Clear Display and Home
ESCI Clear Display

ESC]J Cursor to End of Display
ESCK Cursor to End of Line
ESCM Line Containing Cursor
Sounds

ESCT Short Bell

ESCL Long Bell

ESCP Click

ESCQ Alert

Cursor Style

ESCF Underscore Cursor On
ESCG Underscore Cursor Off
ESCR Blinking Cursor On
ESCS Blinking Cursor Off

Key Clicks (audible sounds from terminal)
ESCU Key Click Enable
ESCV Key Click Disable

Identify (sends “TT!” then terminal firmware version)

ESCZ Send Terminal ID
Cursor Position
ESCY Pr Pc

In the above sequence, Pr is the row number and Pc is the column number of the target cursor location.
These parameters are formed by adding hexadecimal 1F to the row and column numbers. Row and
column numbers are absolute, with row 1, column 1 (Pr=H20, Pc = H20) representing the upper left
corner of the display.

Configuration

<CNTRL><SHIFT>F1 Allows user to configure terminal; Follow prompts on display to change
configuration

228 ¢ Appendices DMC-2X00

Default Configuration:

Baud Rate 9600
Data bits 7

Parity Ignore PE
Display enabled
Repeat Fast
Echo Disabled
Handshake Disabled
Self Test Disabled

Key Click - Disabled <Ctrl>Space <Shift>[2,2]
Key Click - Enabled <Ctrl>Space <Shift>[1,2]
Clear Display and Home <Ctrl>Space <Shift> [5,6]

Function Keys

<CNTRL><SHIFT>F3 Allows function keys to be configured; Follow prompts on display to change
function keys

Default Function Keys
F1 22 decimal
F2 23 decimal
F3 24 decimal
F4 25 decimal
F5 26 decimal

Input/Output of Data — DMC-2x00 Commands

Refer to Chapter 7 in this manual for Data Communication commands.

When using Port 2, use CC command to configure P2.

Example:

CC 9600,0,0,1 Configures P2

MG{P2} “Hello There”, VI1{F2.1} Send message to P2

IN{P2} “Enter Value”, NUM Prompts operator for value
Example:

#A

CI 0;CC 9600,0,0,1 #A Interrupt on any key; Configure P2
MG {P2} “press F1 to start X” Print Message to P2

MG {P2} “Press F2 to start Y” Print Message to P2

DMC-2X00 Appendices ¢ 229

#B; JP#B;EN
#COMINT

JS #XMOVE,P2CH=F1

JS #YMOVE,P2CH=F2
EN1,1
#XMOVE;PR1000;BGX;EN
#YMOVE;PR,1000;BGY;EN

End Program

Interrupt Routine

Jump to X move if F1

Jump to Y move if F2

End, Re-enable comm interrupt & restore trip point
Move X routine

Move Y routine

NOTE: F1 through F5 are used as dedicated keywords for testing function keys. Do not use these as

variables.

6-Pin Modular Connector

1 +5 volts

2 Handshake in
3 Handshake out
4 Data in

5 Data out

6 Ground

9-Pin D Adaptor - Male (For P2)

CTS input

Transmit Data - input

Receive Data - output

RTS - output

Ground

(<20 LV, T I SN BUS I B SO I

CTS - input

RTS - output

CTS - input

5V or no connect or sample clock with jumpers

NOTE: Out and in are referenced to the terminal.

Ordering Information
TERM-1500H-P2
TERM-1500P-P2

Hand-held terminal with female adapter

Panel Mount terminal with female adapter

230 e Appendices

DMC-2X00

Coordinated Motion - Mathematical Analysis

The terms of coordinated motion are best explained in terms of the vector motion. The vector velocity,
Vs, which is also known as the feed rate, is the vector sum of the velocities along the X and Y axes, Vx
and Vy.

Vs =+Vx>+Vy?

The vector distance is the integral of Vs, or the total distance traveled along the path. To illustrate this
further, suppose that a string was placed along the path in the X-Y plane. The length of that string
represents the distance traveled by the vector motion.

The vector velocity is specified independently of the path to allow continuous motion. The path is
specified as a collection of segments. For the purpose of specifying the path, define a special X-Y
coordinate system whose origin is the starting point of the sequence. Each linear segment is specified
by the X-Y coordinate of the final point expressed in units of resolution, and each circular arc is
defined by the arc radius, the starting angle, and the angular width of the arc. The zero angle
corresponds to the positive direction of the X-axis and the CCW direction of rotation is positive.
Angles are expressed in degrees, and the resolution is 1/256™ of a degree. For example, the path
shown in Fig. 12.2 is specified by the instructions:

VP 0,10000
CR 10000, 180, -90
VP 20000, 20000

DMC-2X00

Appendices ¢ 231

20000 c D

10000 B

A X
10000 20000

Figure A-21 - X-Y Motion Path

The first line describes the straight line vector segment between points A and B. The next segment is a
circular arc, which starts at an angle of 180° and traverses -90°. Finally, the third line describes the
linear segment between points C and D. Note that the total length of the motion consists of the

segments:
A-B Linear 10000 units
RAd2x
B-C Circular ——FF =15708
360
C-D Linear 1000
Total 35708 counts

In general, the length of each linear segment is

Li-N Xk* +Yk?

Where Xk and Yk are the changes in X and Y positions along the linear segment. The length of the
circular arc is

Li= Ri|A®«|27/360

The total travel distance is given by

D= Zn:Lk
=1

The velocity profile may be specified independently in terms of the vector velocity and acceleration.

232 « Appendices DMC-2X00

For example, the velocity profile corresponding to the path of Fig. 12.2 may be specified in terms of
the vector speed and acceleration.

VS 100000
VA 2000000

The resulting vector velocity is shown in Fig. 12.3.

Velocity

10000

time (s)

T 0.05 T 0.357 T, 0.407

a s

Figure A-22 - Vector Velocity Profile
The acceleration time, Ty, is given by

VS _ 100000

= = =0.05s
VA 2000000

The slew time, Ts, is given by

D 35708

Ti=— —T,=
VS 100000

=-0.05=0.307s

The total motion time, Tt, is given by

Tt:£+Ta:O.407S
VS

The velocities along the X and Y axes are such that the direction of motion follows the specified path,
yet the vector velocity fits the vector speed and acceleration requirements.

For example, the velocities along the X and Y axes for the path shown in Fig. 12.2 are given in Fig.
12.4.

Fig. 12.4a shows the vector velocity. It also indicates the position point along the path starting at A
and ending at D. Between the points A and B, the motion is along the Y axis. Therefore,

Vy=Vs
and

Vx=0

Between the points B and C, the velocities vary gradually and finally, between the points C and D, the
motion is in the X direction.

DMC-2X00

Appendices ¢ 233

(@)

Figure A-23 - Vector and Axes Velocities

time

Example- Communicating with OPTO-22 SNAP-B3000-

ENET

Controller is connected to OPTO-22 via handle F. The OPTO-22’s IP address is 131.29.50.30. The

Rack has the following configuration:
Module 1
Module 2

Digital Inputs
Digital Outputs

Analog Outputs (+/-10V) Module 3

Analog Inputs (+/-10V)

Instruction

#CONFIG
IHF=131,29,50,30<502>2
WTI10

JP #CFGERR,_IHF2=0
JS #CFGDOUT

JS #CFGAOUT

JS #CFGAIN

MBF = 6,6,1025,1

Module 4

Interpretation

Label

Establish connection

Wait 10 milliseconds

Jump to subroutine

Configure digital outputs
Configure analog outputs
Configure analog inputs

Save configuration to OPTO-22

234 « Appendices

DMC-2X00

EN End

#CFGDOUT Label
MODULE=2 Set variable
CFGVALUE=$180 Set variable
NUMOFIO=4 Set variable

JP #CFGJOIN Jump to subroutine
#CFGAOUT Label
MODULE=3 Set variable
CFGVALUE=$A7 Set variable
NUMOFIO=2 Set variable

JP #CFGJOIN Jump to subroutine
#CFGAIN Label
MODULE=5 Set variable
CFGVALUE=I12 Set variable
NUMOFIO=2 Set variable
JP#CFGJOIN Jump to subroutine
#CFGJOIN Label

DM A[8] Dimension array
=0 Set variable
#CFGLOOP Loop subroutine
A[l]=0 Set array element
I=1+1 Increment

A[I]=CFGVALUE

=1+1

Set array element

Increment

JP #CFGLOOP,I<2*NUMOFIO) Conditional statement
MBF=6,16,632+(MODULE*8),NU Configure I/O using Modbus function code 16 where the starting

MOFIO*2,A[] register is 632+(MODULE*8), number of registers is
NUMOFIO*2 and A[] contains the data.

EN end

#CFERR Label

MG”UNABLE TO ESTABLISH Message

CONNECTION”

EN End

Using the equation

I/0O number = (Handlenum*1000) + ((Module-1)*4) + (Bitnum-1)

MG @IN[6001] display level of input at handle 6, module 1, bit 2

DMC-2X00 Appendices ¢ 235

SB 6006 set bit of output at handle 6, module 2, bit 3
or toone

OB 6006,1

AO 608,3.6 set analog output at handle 6, module 53, bit 1 to 3.6 volts
MG @AN][6017] display voltage value of analog input at handle6, module 5, bit 2

236 ¢ Appendices DMC-2X00

DMC-2x00/DMC-1500 Comparison

BENEFIT

DMC-2x00

DMC-1500

Access to parameters — real time data
processing & recording

Data Record - Block Data Transfer

No DMA channel

Easy to install — USB is self configuring | Plug and Play USB not available

Can capture and save array data Variable storage Option

Parameters can be stored Array storage Option

Firmware can be upgraded in field Flash memory for firmware EPROM for firmware which

without removing controller from PC

must be installed on controller

Faster servo operation — good for very
high resolution sensors

12 MHz encoder speed for servos

8 MHz

Faster stepper operation

3 MHz stepper rate

2 MHz

Higher servo bandwidth

62 psec/axis sample time

125 usec/axis

Higher resolution for analog inputs

8 analog inputs with 16-bit ADC option

7 inputs with 16-Bit option

Improved EMI

100-pin high density connector

60-pin IDC, 26-pin IDC, 20-pin
IDC (x2)

For precise registration applications

Output Position Compare

Available as a special

More flexible gearing

Multiple masters allowed in gearing
mode

One master for gearing

Binary command mode

Binary and ASCII communication
modes

ASCII only

Gearing

Multiple Gearing Masters Accepted

Single Gearing Master Accepted

Coordinated Motion

2 Sets of Coordinated Motion Accepted

Single set of coordinated motion
only

DMC-2X00

Appendices e 237

List of Other Publications

"Step by Step Design of Motion Control Systems"
by Dr. Jacob Tal

"Motion Control Applications"
by Dr. Jacob Tal

"Motion Control by Microprocessors"

by Dr. Jacob Tal

Training Seminars

Galil, a leader in motion control with over 250,000 controllers working worldwide, has a proud
reputation for anticipating and setting the trends in motion control. Galil understands your need to
keep abreast with these trends in order to remain resourceful and competitive. Through a series of
seminars and workshops held over the past 15 years, Galil has actively shared their market insights in a
no-nonsense way for a world of engineers on the move. In fact, over 10,000 engineers have attended
Galil seminars. The tradition continues with three different seminars, each designed for your particular
skill set-from beginner to the most advanced.

MOTION CONTROL MADE EASY
WHO SHOULD ATTEND

Those who need a basic introduction or refresher on how to successfully implement servo motion
control systems.

TIME: 4 hours (8:30 am-12:30 pm)

ADVANCED MOTION CONTROL
WHO SHOULD ATTEND

Those who consider themselves a "servo specialist”" and require an in-depth knowledge of motion
control systems to ensure outstanding controller performance. Also, prior completion of "Motion
Control Made Easy" or equivalent is required. Analysis and design tools as well as several design
examples will be provided.

TIME: 8 hours (8:00 am-5:00 pm)

PRODUCT WORKSHOP
WHO SHOULD ATTEND

Current users of Galil motion controllers. Conducted at Galil's headquarters in Rocklin, CA, students
will gain detailed understanding about connecting systems elements, system tuning and motion
programming. This is a "hands-on" seminar and students can test their application on actual hardware
and review it with Galil specialists.

TIME: Two days (8:30 am-5:00 pm)

238 ¢ Appendices DMC-2X00

Contacting Us

Galil Motion Control

3750 Atherton Road

Rocklin, CA 95765

Phone: 916-626-0101

Fax: 916-626-0102

E-Mail Address: support@galilmc.com
URL: www.galilmc.com

FTP: www.galilmc.com/ftp

DMC-2X00

Appendices ¢ 239

WARRANTY

All products manufactured by Galil Motion Control are warranted against defects in materials and
workmanship. The warranty period for controller boards is 1 year. The warranty period for all other
products is 180 days.

In the event of any defects in materials or workmanship, Galil Motion Control will, at its sole option,
repair or replace the defective product covered by this warranty without charge. To obtain warranty
service, the defective product must be returned within 30 days of the expiration of the applicable
warranty period to Galil Motion Control, properly packaged and with transportation and insurance
prepaid. We will reship at our expense only to destinations in the United States.

Any defect in materials or workmanship determined by Galil Motion Control to be attributable to
customer alteration, modification, negligence or misuse is not covered by this warranty.

EXCEPT AS SET FORTH ABOVE, GALIL MOTION CONTROL WILL MAKE NO
WARRANTIES EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO SUCH PRODUCTS,
AND SHALL NOT BE LIABLE OR RESPONSIBLE FOR ANY INCIDENTAL OR
CONSEQUENTIAL DAMAGES.

COPYRIGHT (3-97)

The software code contained in this Galil product is protected by copyright and must not be reproduced
or disassembled in any form without prior written consent of Galil Motion Control, Inc.

240 « Appendices DMC-2X00

IndeXx

Abort.... 1,37, 38, 73,79, 113, 157, 158, 159, 177, 188,

189

Off-On-Error.........ccovveeeciiieeeeeee 37,157,159

Stop MOtION ...t 73,79
Absolute Position..........cccceevvveeeeenn. 31, 68, 69, 70, 115
Absolute Valuecccccoeovvvevinnieiininnn, 86, 97, 130, 158
Acceleration.............. 2,28,68,69,71,72,75, 144, 232
ACCESSOTIES .veuvveereeereeetreeeteeeeteeeeteeesteeeereeereeereeenns 192
AMP-19X0 ..o, 192, 200, 203, 204
Amplifier Enable 5,20, 40, 157, 192, 205
Amplifier Gain........ccecveveveverecieeiennns 2,5,22,172, 174

Analog Input.. 1, 4, 36, 40, 72, 130, 132, 133, 135, 147,
154,177, 192, 194, 234, 237

Linear Interpolation34, 35, 67, 68, 73, 74, 75, 77, 78,

83
Data Recordcooovvvvvvvnnnnnnenenn. 51, 54, 56,91, 92, 237
Echo46, 55, 57, 229
Edit Mode........covveeieiiieeeeeeeeeeeee e, 32,108, 123
Editor ...oouveeeieieeeeeeeeeeeee e 32,33,107, 108
EEPROMcoovveiieiieeis 1,3, 13,14, 15, 149, 190
Electronic Cam.............c.......... 67, 68, 85, 86, 88, 89, 95
Electronic Gearingccoeevennen. 1, 67, 68, 83, 84, 85
EIlipse Scale......cccvevieriieieeieieieeee e 81
Enable

Amplifier Enable................. 5, 20,40, 157,192, 205

Encoder

Analysis Auxiliary Encoderl, 4, 11, 21, 28, 36, 41, 42, 84, 97,
WSDK ..o 12, 17,22, 89,179, 192 98,99, 100, 146, 177, 178, 182, 189, 197
Arm LatCh.......coooooiiiiiiie e 106 Differential 5, 21, 23, 42, 146, 162, 177, 178, 189
Array............... 1,13, 68,92, 93,94, 113, 128, 132, 133 Dual Encoder...........cooeeevieeieecieceieene. 64,99, 135
Automatic Subroutine Index PulS€.....ccovvvvvvuviiiiiiiiiceeeceee 21,37,103
CMDERRc.coovviiieieceieene. 110, 123, 125, 126 Quadrature.....3, 5, 98, 144, 150, 169, 177, 178, 188
ININT 110, 121, 123, 146, 147 Error Code......ccovveevievrieeieecieeenne. 50,63,64,113,114
LIMSWI........ 36, 110, 122, 123, 124, 158, 160, 189 Error Handlingcccooveviieiiiiiiieieeeen, ii, 109, 157
MCTIMEcccoovviiieeieeeeee. 110, 115, 123, 125 Error Limit 20, 22,29, 41, 43,123, 157, 158, 188
POSERRcccoveeviiiiecieiee. 110, 122, 158, 159 Off-On-Error........ccovvveevivenenne., 20, 37,41, 157, 159
Position Error........cccoevveiiiieiieiiece e 123 Example
TCPERRcovvieeeeeeeeeeeeeeeee, 110, 123, 127 BINATY ..ceieeieieieee e 62
Backlashcccoceviiiienine 68, 98, 99, 100, 154, 155 Change Speed along Vector Path........................ 117
Dual Loop ..ccoveeeiveeieeieeieeeeeee 68, 98, 99, 100 Command EITor..........cooveviiiiiieiiiieeeeeee e 125
Baud Rateccooevvveivnieeine. 15, 16, 17, 45, 46, 162 Command Error w/Multitaskingc.cc.cc..c.... 126
Begin Motion.........coceeeeieieienenene 23,27,47,74, 81 Communication Interrupt...........c.occveeevennen. 126, 138
Binary......ccccoeveeveenenen. 1, 50, 59, 61, 62, 148, 212, 237 Continuous Dual Loopcccoevveevvecverienienieenenen. 99
Bit-WiS€...oooiiiiiiieiiiiee e 119, 128, 139 (0] 1110181 SRR 91
Burn 26, 44 Cut-to-Length.......ccccoevveiieiiiiieece e 136
EEPROM.....coooiiiieiieiiieeee e 1,3, 149, 190 Daisy Chain........cccceeeveeierieieeieee e 47
Capture Data Define Output Waveform Using AT 118
Record......ccvvvieeneiiinnn. 68,94, 133, 134, 135, 237 Design Exampleccooeevieiiiiiniiieeeeeee 29
CIrCle .o 110, 151, 152 Electronic CAMccoooviieiiieieieeeeeeeeeee e 89
Circular Interpolationcccceevveeercenienneenne 35,78 Ethernet Communication Error...........ccccceeeeenne. 127
Clear Bit.......oooveeeveiiiieiieeeee, 42, 144, 145, 188, 210 Example Applications..........ccccecvevveereeeeenneenennn. 150
Clear SeqUENCEecccuveeevveereeeeieeeieeenneenn 73,75,79, 81 GRATING ..ottt 84
CMDERRcovviiiiiiiiiiieeeeeee, 110, 123, 125, 126 Generating an AITaycccocceeeeeeeeeeneenieneneeneee 92
Coordinated Motion Independent AXISccevverrieciieienienienieesie e 70
DMC-2X00 Index e 241

Input Interrupt.......ccceevvevveriieiieieeieeieeeens 124, 147 Digital Inputl, 38, 130, 145, 207, 208, 209, 211, 212
Inputting Numeric Datac.cceevveeievveneennnnne. 136 Digital Output 1, 130, 144, 192, 204, 207, 209, 210,
Jog72 212
| D 1] o RO 106 Home Inputccccoovviiiiiinenn. 37,103, 105, 177
Limit SWitchccoeevviiiiiiciiiiieeee e, 123, 160 Limit Switch.36, 109, 113, 122, 123, 124, 132, 158,
Linear Interpolationcccocceeveeieeienenienenne. 75 160, 162, 189
Motion Complete.........oecueeeeriereereiieieereeeene 125 ICM-1900.........cccovvvernnnnnn.. 40, 192, 200, 203, 204, 205
Motion SMOOthiNGc.ccveveereiriirieieieieeeene 101 ICM-290011, 16, 20, 21, 40, 41, 42, 157, 192, 193, 196,
Multiple Move Sequence.........cocveeveeecveesveennnen. 116 199, 204, 205
Multiple Move with Waitcccoevveerveennreennen. 118 Index PUlS€.....oooviveiiiiiiiiiieeeee e 21,37,103
OPLO 22 e 234 ININT....cooeeeieeeeeeeee e 110, 121, 123, 146, 147
OUPUL Bit oo 145 Input Interruptcceovvvennenen. 110, 121, 123, 146, 147
OUtput POTt .o 145 INtegrator....c.ceeveeeeiiieieeie e 28,29, 166,172
Position Follower.........cccccoveviieiiieiieeiec e, 147 Interconnect Module
Printing a Variable.........ccccevvevieceiieiieeee, 141 AMP-19X0...oooeieeeiieeieeeeeee 192, 200, 203, 204
Record and Playbackccccovveverienieniieireieen, 94 ICM-1900.........ccuvveune.. 40, 192, 200, 203, 204, 205
Recording into An AIrayccocceevveeeerceneeneenne 135 ICM-2900.11, 16, 20, 21, 40, 41, 42, 157, 192, 193,
Repetitive Position Trigger........ccccceveeereevevennnne. 116 196, 199, 204, 205
Set Bitand Clear Bit.......cccocuvvvviiiiiiiiiiiiiiieens 145 Internal Variableccccovvvnveveeennnnn. 34,131, 132,212
Set Output when At Speed.......c.cccvevveereevennnennen. 117 Interrogation29, 30, 32, 64, 75, 112, 113, 141, 142, 179
Sinusoidal Commutation............ccccceeeuveernnnn.. 19, 25 Invert....oooovvveeeiiiiiiiieeeeeees 23,98, 162, 188, 204
Sinusoidal Motion...........cooovvvviiviieeieiieeeeeee e 95 Jog 1,67,71,72,83,138
Start Motion on Input...........ccoeceevvenierieeciennennen. 116 Jumper....... 12, 13, 14, 17, 28, 40, 47, 96, 188, 190, 200
Start Motion on SWitCh..........cccccvvvvviieiiiierecnen. 146 | 571 o1 AR 14, 20, 28
Tangent AXiS.......cceevverierreeieeieseenieereeneeeesseensens 81 Program Label.........ccccooveviveciieinnnne 113,114,118
Turn on output after Movecceeevvvververerennnnne, 145 Special Label.......cccooeoevienieiiieeeiee, 109, 122
USING INPULS...evveiieiieieeieeeeeee e 146 Latch oo 4,64, 105, 189
Using Variables for Joystick...........ccocvreirriennnne 132 Arm Latch ..o.ooeeiiieiee e 106
Wire CUter .ot 150 Position Capture.........cccceveeereeerieeienieseeeeieeeene 105
Feedrateooovveeueeeeeeeeeeeee e 74, 80, 152 Limit Switch........ 36,110, 122, 123, 124, 158, 160, 189
FIFO oo 56,57, 112 Linear Interpolation....34, 35, 67, 68, 73, 74, 75, 77, 78,
Filter Parameter 83
Dampingccooeeveereeneeneeneenenn 28,162,166, 171 Logical Operatorcceceveenerierenenceieeene 119, 138
GalN . 28,29, 32, 162, 166 Masking
Integratorcceevevvevieeiieieeieeeens 28,29, 166, 172 Bit-WiS€ ..uvvviiieiiiiieee e 119, 128, 139
PID.ooooeiiiieeceeeeecee 2,23,28,29, 166, 170 Memory..1, 2, 3, 25, 26, 32, 49, 59, 107, 109, 113, 119,
Proportionalccoecverieireinnne 28,29, 100, 166 122, 123, 134, 149, 237
Stability......cceovveeeveireieeienen. 99, 100, 161, 162, 166 Message 15,16, 45, 51,57, 113, 123, 129, 140, 141
Find Edge......ccoeoveevveiieieeieeeee, 37,55, 103, 105, 189 MOdEIlING....veeieciieeiieiiee et 166
Formattingccccoeeienieiieieeee e 140, 143 Motion Complete
Frequency .5, 28, 95, 102, 171, 173, 174, 177, 188, 204 MCTIME.......ccoiiiieeeeeeeeeea, 110, 115,123, 125
Function Motion Smoothing 68, 69, 71, 96, 100, 101, 102
ArithmetiC.......coovvvvvveeeennns 107,119, 128, 131, 144 Motor Command................. 2,19,23,25,171, 179, 188
Gain 2, 3, 5, 22, 28, 29, 32, 162, 166 Multitaskingcccceeeereenerenenieieee 111, 125,126
Gear RAtIO.......eeiieeiiiieeee e 83, 84 Off-On-Error......ccocvvevveveneennnnn. 20, 37, 41, 55, 157, 159
Gearingooceeevvevveennenns 1,67, 68, 83, 84, 85, 179, 237 Operand
Halt 74, 111,112, 114, 115,117, 118 Internal Variable............ccuoeen.... 34,131, 132,212
hardware Operator
Extended I/O.......oooovviieeeieieeeeeeeeeeee e 207 Bit-WISE€ ..ooooiiiiieeeee e 119, 128
Hardwareccooovevieiieieeeeeece e 36 Output
/0144 Amplifier Enable................. 5,20, 40, 157, 192, 205
Hardware Handshake...........cc.ccccooeevvnnnnn. 14, 15, 45, 57 Digital Output 1, 130, 144, 192, 204, 207, 209, 210,
Home Input.......ccoocoeviiiieiiiiiee 37,103, 105, 177 212
Homing......cooevvevieniiiiiceiccee 37,103, 105, 189 Error Outputcccvvveeiieeieeieeieeee e 43,157
1/0 Motor Command........... 2,19,23,25,171, 179, 188
Amplifier Enable 5,20, 21, 40, 157, 192, 205 OUutput COMPATE......veeerieereeeieeereerreeereeereesaeens 42
242 o DMC-2X00

Step and Directioncccveevveceeeeeneeneenieeneennn. 1,2
Position Error

POSERRccooovvvveiiiiens 110, 122, 123, 158, 159
Position Limit..........ccoooeveiiiiiieeiiieceeeee e 158
Program FIOWccccvvviviiiieiieieiee 109, 114, 146

Interrupt . 1, 109, 110, 117, 121, 122, 124, 126, 127,
138, 139, 146, 147, 189, 230

StACK ..o, 122, 125,127, 147
Programming..........c.ccceeeueeee. 37,59, 67,132,162, 163
Proportional Gainccceeeeeeciieecieenciienieesieeeveeeenn 28
Protection

Error Limit.... 20, 22, 29, 41, 43, 123, 157, 158, 188

Torque Limit......ccccvevieeienieniieiecie e 22,32
PWM e 5, 188, 204
Quadrature........... 3,5,98, 144, 150, 169, 177, 178, 188
Quit

Abortl, 37, 38, 73, 79, 113, 157, 159, 177, 188, 189

Stop MOtION ..o 73,79
Recordooovvvevieeciiiieenn. 68,94, 133, 134, 135, 237

Latch..coooooviieiecieeeeceeee, 4, 64, 105, 106, 189

TEACH ..o 68, 94
REGIStOr ..ot 17, 18, 19

Reset..2, 13, 14, 15, 21, 26, 27, 36, 38, 43, 50, 57, 157,
159, 162, 188, 189, 190
Scale
Ellipse Scaleccveveeierieiieieeeeeieseeeeee e 81
Serial Port.... 14, 15, 16, 17, 18, 46, 110, 126, 127, 138,
140, 141, 185, 186, 187, 190

Set Bit..oooieeeieiicevieieeeeeeee, 42,144, 145, 188, 210
Sine 68, 88, 130
Single-Endedcccovieiieiiiiieeee 5,21,23,177

Slew 28, 30, 68, 69, 103, 115, 150, 189
Smoothing 1, 28, 68, 69, 71, 74, 75, 79, 81, 96, 97, 100,

SYNEAX .o 59, 60, 61
Tangentccceevvveeeveeniieeieeieeneene 68, 78, 80, 81, 130
TeACK. ...eiiiieieeerec e 68,94, 134
Data Capturecccoeeveevieencieeniienieenieeenn 134, 135
Latch .cooovvvieiiieieeee 4, 64,105, 106, 135, 189
Play-Backcoooieiieieeeeee e 94
Record......covvevivieinnen. 68,94, 133, 134, 135, 237
Tell Error Codevvvvvveiiiiiiiiieeiiieeeeee. 63,064,114
Tell Position.........ccccevereeeeenenee. 30, 57, 64, 98, 132, 142
Tell TOTQUE...cvierieerieeiieiieeieeie et 23, 64

Terminal...13, 16, 17, 19, 20, 22, 32, 33, 36, 40, 45, 46,
48,59, 107,108, 111, 132, 179, 192

TREOTY oottt 163
Damping.......cccccevvereeneeienieeeenne 28,162, 166, 171
Digital Filter.........ccoovevverienienn. 59,170,172, 174
Modelingccoecveveeeenienieieeeeeee, 163,167,171
PID ..o, 2,23,28,29, 166, 170
Stabilityccceeveienennnn. 99, 100, 155, 161, 162, 166

TIME ... 133

TIMEOUL ...t e 17
MCTIME.......ccoooeiieeeeeeeeee, 110, 115,123, 125

Torque Limit......cccceeviieeiiieiiieeiee e 22,32

Trigger ...cooevveveennenne. 107, 114,115, 116, 118, 188, 189

Trippoint ..33, 69, 75, 80, 81, 91, 96,97, 114, 115, 116,

179

TroubleShoOtccvvveeeiiieeeeee e 161

TTL 4, 5, 20, 36, 41, 42, 157, 177, 188, 205, 207

TUNING ..o 1,12,23,29,99, 238
Stabilitycccoeeveienennen. 99, 100, 155, 161, 162, 166
WSDK ..o 12, 17,22, 89,179, 192

Upload......cooieieeeeeee e 33,134,179

User Unit......ooooviiiiiiieieieceeee e 144

Variable3, 13, 34, 65, 99, 107, 112, 113, 119, 128, 130,

101, 102 131, 132, 139, 140, 141, 144, 153, 179
Software Internal Variable............ccuoeen.... 34,131, 132,212
Terminall3, 16, 17, 19, 20, 22, 32, 33, 36, 40, 45, 46, Vector Accelerationccocvevevvveeeeenneeeennnen. 35,75, 81
48,59, 107, 108, 111, 132,179, 192 Vector Decelerationcccceeeeeuveeenn... 35,75, 76, 81
WSDK ...t 12,17, 18, 22, 89, 179, 192 Vector MOdeooevieeiiiciiecieeceeceeete e 73,78
Special Labelccooeevecievieiieieeee 109, 122, 160 Circular Interpolation.............ccocevrvennnns 35,78, 152
Stability ...coeoveeeeiieieeeeee, 99, 100, 155, 161, 162, 166 Clear Sequence..........cccceeeeveeneeeneeennens 73,75, 79, 81
StACK wevveeeei e 122,125, 127, 147 Ellipse Scale.......cccoeereriiiienieeeceeeeeeee 74, 81
Zer0o StacK.......cooveeeiiieieiieeee e 125, 147 Feedrate.......coooeeeveiiieieieeeeeeeeeee e 80, 152
Step Motor.......ccceeeeeveenee. 1,3,4,12,28, 102, 188, 189 Linear Interpolation34, 35, 67, 68, 73, 74, 75, 78, 83
KS, Smoothing...... 28, 68, 96, 97, 98, 100, 101, 102 Tangent........ccoceveeeeneneneceecneee 68, 78, 80, 81, 130
Stop Codevvenveeerieiiereiieciieen, 64,105,113, 135,162 Vector Speed........... 35,73,74,75,76,79, 80, 117,233
StOP MOtION ...cuvieeiieeiiciieciieie e 73,79 WIEE CULET ...ttt 150
Subroutine.... 36, 95, 107, 109, 110, 111, 118, 119, 120, WSDK ..o 12, 17,22, 89,179, 192
122, 123, 124, 125, 126, 138, 146, 158, 160, 189 710 StaCKcveieeiiieiiiceie e 125, 147
Synchronization...........ccecceeevereereeneeeneeeeenne 1, 5,44, 85
DMC-2X00 ® 243

	Using This Manual
	ContentsUsing This ManualiiContentsiChapter 1 Overview1Introduction1Overview of Motor Types1Standard Servo Motor with +/- 10 Volt Command Signal2Brushless Servo Motor with Sinusoidal Commutation2Stepper Motor with Step and Direction Signals2Overview of A
	Chapter 1 Overview
	Introduction
	Overview of Motor Types
	Standard Servo Motor with +/- 10 Volt Command Signal
	Brushless Servo Motor with Sinusoidal Commutation
	Stepper Motor with Step and Direction Signals

	Overview of Amplifiers
	Amplifiers in Current Mode
	Amplifiers in Velocity Mode
	Stepper Motor Amplifiers

	DMC-2x00 Functional Elements
	Microcomputer Section
	Motor Interface
	Communication
	General I/O
	System Elements
	Motor
	Amplifier (Driver)
	Encoder
	Watch Dog Timer

	Chapter 2 Getting Started
	The DMC-2x00 Main Board
	The DMC-2000 Daughter Board
	The DMC-2200 Daughter Board
	Elements You Need
	Installing the DMC-2x00
	Step 1. Determine Overall Motor Configuration
	Standard Servo Motor Operation:
	Sinusoidal Commutation:
	Stepper Motor Operation

	Step 2. Install Jumpers on the DMC-2x00
	Master Reset and Upgrade Jumpers
	Opto-Isolation Jumpers
	Stepper Motor Jumpers
	(Optional) Motor Off Jumpers
	Communications Jumpers for DMC-2000
	Communications Jumpers for DMC-2100/DMC-2200

	Step 3a. Configure DIP switches on the DMC-2000
	Switch 1 - Master Reset
	Switch 2 - XON / XOFF
	Switch 3 - Hardware Handshake Mode
	Switch 4, 5 and 6 - Main Serial Port Baud Rate
	Switch 10 - USB

	Step 3b. Configure DIP switches on the DMC-2100
	Switch 1 - Master Reset
	Switch 2 - XON / XOFF
	Switch 3 - Hardware Handshake Mode

	Step 3c. Configure DIP switches on the DMC-2200
	Switch 1 - Master Reset
	Switch 2 - XON / XOFF
	Switch 3 - Hardware Handshake Mode
	Switch 4,5 and 6 - Main Serial Port Baud Rate
	Switch 7-Option
	Switch 8-Ethernet

	Step 4. Install the Communications Software
	Using Windows 98SE, NT, ME, 2000 or XP:

	Step 5. Connect AC Power to the Controller
	Step 6. Establish Communications with Galil Software
	Communicating through the Main Serial Communications Port
	Using Galil Software for DOS (serial communication only)
	Using Galil Software for Windows
	Using Non-Galil Communication Software

	Communicating through the Universal Serial Bus (USB)
	Communicating through the Ethernet
	Using Galil Software for Windows

	Sending Test Commands to the Terminal:

	Step 7. Determine the Axes to be Used for Sinusoidal Commutation
	Notes on Configuring Sinusoidal Commutation:
	Example: Sinusoidal Commutation Configuration using a DMC-2x70

	Step 8. Make Connections to Amplifier and Encoder.
	Step 9a. Connect Standard Servo Motors
	Inverting the Loop Polarity

	Step 9b. Connect Sinusoidal Commutation Motors
	Example: Sinusoidal Commutation Configuration using a DMC-2x70

	Step 9c. Connect Step Motors
	Step 10. Tune the Servo System

	Design Examples
	System Set-up
	Profiled Move
	Multiple Axes
	Objective: Move the four axes independently.
	Independent Moves
	The motion parameters may be specified independently as illustrated below.
	Position Interrogation
	The position error, which is the difference between the commanded position and the actual position can be interrogated with the instruction TE.
	Absolute Position
	Velocity Control
	Operation Under Torque Limit
	Interrogation
	Operation in the Buffer Mode
	Using the On-Board Editor
	Motion Programs with Loops
	Motion Programs with Trippoints
	Control Variables
	Linear Interpolation
	Circular Interpolation

	Chapter 3 Connecting Hardware
	Overview
	Using Optoisolated Inputs
	Limit Switch Input
	Home Switch Input
	Abort Input
	Reset Input
	Uncommitted Digital Inputs

	Wiring the Opto-Isolated Inputs
	The Opto-Isolation Common Point
	Using an Isolated Power Supply
	Bypassing the Opto-Isolation:

	Analog Inputs
	Amplifier Interface
	TTL Inputs
	The Auxiliary Encoder Inputs

	TTL Outputs
	General Use Outputs
	Output Compare
	Error Output

	Extended I/O of the DMC-2x00 Controller
	
	Interfacing to Grayhill or OPTO-22 G4PB24:

	Chapter 4 Communication
	Introduction
	RS232 Ports
	RS232 - Main Port {P1} DATATERM
	RS232 - Auxiliary Port {P2}DATASET
	*RS422 - Main Port {P1}
	*RS422 - Auxiliary Port {P2}
	RS-232 Configuration
	Baud Rate Selection
	Handshaking Modes
	Daisy-Chaining (DMC-2000 only)
	Example- Daisy Chain
	Synchronizing Sample Clocks in Daisy Chain

	Ethernet Configuration (DMC-2100/2200 only)
	Communication Protocols
	Addressing
	Communicating with Multiple Devices
	Multicasting
	Using Third Party Software

	Data Record
	Data Record Map
	Explanation of Status Information and Axis Switch Information
	Header Information - Byte 0, 1 of Header:
	Bytes 2, 3 of Header:
	Byte 2 is the low byte and byte 3 is the high byte

	General Status Information (1 Byte)
	Axis Switch Information (1 Byte)
	Axis Status Information (2 Byte)
	Coordinated Motion Status Information for S or T plane (2 Byte)

	Notes Regarding Velocity and Torque Information
	QZ Command

	Controller Response to Commands
	Unsolicited Messages Generated by Controller
	Galil Software Tools and Libraries

	Chapter 5 Command Basics
	Introduction
	Command Syntax - ASCII
	Coordinated Motion with more than 1 axis

	Command Syntax - Binary
	Binary Command Format
	Header Format:
	Byte 1
	Byte 2
	Byte 3
	Byte 4

	Datafields Format
	Example

	Binary Command Table

	Controller Response to DATA
	Interrogating the Controller
	Interrogation Commands
	Summary of Interrogation Commands
	Interrogating Current Commanded Values.
	Operands
	Command Summary

	Chapter 6 Programming Motion
	Overview
	Independent Axis Positioning
	Command Summary - Independent Axis
	Operand Summary - Independent Axis
	Examples
	Absolute Position Movement
	Multiple Move Sequence

	Independent Jogging
	Command Summary - Jogging
	Operand Summary - Independent Axis
	Examples
	Jog in X only
	Joystick Jogging

	Linear Interpolation Mode
	Specifying the Coordinate Plane
	Specifying Linear Segments
	Additional Commands
	Specifying Vector Speed for Each Segment
	Changing Feed Rate:

	Command Summary - Linear Interpolation
	Operand Summary - Linear Interpolation
	Example
	Linear Interpolation Motion
	Linear Move
	Multiple Moves

	Vector Mode: Linear and Circular Interpolation Motion
	Specifying the Coordinate Plane
	Specifying Vector Segments
	Additional commands
	Specifying Vector Speed for Each Segment:
	Changing Feed rate:
	Compensating for Differences in Encoder Resolution:
	Trippoints:
	Tangent Motion:

	Command Summary - Coordinated Motion Sequence
	Operand Summary - Coordinated Motion Sequence
	Example
	Tangent Axis
	Coordinated Motion

	Electronic Gearing
	Command Summary - Electronic Gearing
	Example
	Simple Master/Slave
	Electronic Gearing
	Gantry Mode
	Synchronize two conveyor belts with trapezoidal velocity correction.

	Electronic Cam
	Command Summary - Electronic CAM
	Operand Summary - Electronic CAM
	Example
	Electronic CAM

	Contour Mode
	Specifying Contour Segments
	Additional Commands
	Command Summary - Contour Mode
	General Velocity Profiles
	Example
	Generating an Array
	Contour Mode
	Teach (Record and Play-Back)
	Record and Playback Example

	Virtual Axis
	Ecam master example
	Sinusoidal Motion Example

	Stepper Motor Operation
	Specifying Stepper Motor Operation
	Stepper Motor Smoothing
	Monitoring Generated Pulses vs. Commanded Pulses
	Motion Complete Trip point
	Using an Encoder with Stepper Motors
	Command Summary - Stepper Motor Operation
	Operand Summary - Stepper Motor Operation

	Dual Loop (Auxiliary Encoder)
	Additional Commands for the Auxiliary Encoder
	Backlash Compensation
	Example
	Continuous Dual Loop
	Sampled Dual Loop

	Motion Smoothing
	Using the IT and VT Commands:
	Example
	Using the KS Command (Step Motor Smoothing):

	Homing
	Example
	Command Summary - Homing Operation
	Operand Summary - Homing Operation

	High Speed Position Capture (The Latch Function)
	Example

	Chapter 7 Application Programming
	Overview
	Using the DOS Editor to Enter Programs (DMC-2000 only)
	Edit Mode Commands
	Example

	Program Format
	Using Labels in Programs
	Example

	Special Labels
	Commenting Programs
	NO Command
	REM Command

	Executing Programs - Multitasking
	Debugging Programs
	Trace Commands (DMC-2100/2200 only)
	Error Code Command
	Stop Code Command
	RAM Memory Interrogation Commands
	Operands
	Example

	Program Flow Commands
	Event Triggers & Trippoints
	DMC-2x00 Event Triggers
	Example- Multiple Move Sequence
	Example- Set Output after Distance
	Example- Repetitive Position Trigger
	Example - Start Motion on Input
	Example - Set Output when At Speed
	Example - Change Speed along Vector Path
	Example - Multiple Move with Wait
	Example- Define Output Waveform Using AT

	Conditional Jumps
	Command Format - JP and JS
	Logical operators:
	Conditional Statements
	Multiple Conditional Statements
	Examples

	If, Else, and Endif
	Using the IF and ENDIF Commands
	Using the ELSE Command
	Nesting IF Conditional Statements
	Command Format - IF, ELSE and ENDIF

	Subroutines
	Stack Manipulation
	Auto-Start Routine
	Automatic Subroutines for Monitoring Conditions
	Example - Limit Switch:
	Example - Position Error
	Example - Input Interrupt
	Example - Motion Complete Timeout
	Example - Command Error
	Example - Command Error w/Multitasking
	Example - Communication Interrupt

	Mathematical and Functional Expressions
	Mathematical Operators
	Bit-Wise Operators
	Functions

	Variables
	Programmable Variables
	Assigning Values to Variables
	Assigning Variable Values to Controller Parameters
	Displaying the value of variables at the terminal
	Example - Using Variables for Joystick

	Operands
	Special Operands (Keywords)

	Arrays
	Defining Arrays
	Assignment of Array Entries
	Using a Variable to Address Array Elements

	Uploading and Downloading Arrays to On Board Memory
	Automatic Data Capture into Arrays
	Command Summary - Automatic Data Capture
	Data Types for Recording:
	Operand Summary - Automatic Data Capture
	Example - Recording into an Array

	Deallocating Array Space

	Input of Data (Numeric and String)
	Input of Data
	Example- Inputting Numeric Data
	Example- Cut-to-Length

	Operator Data Entry Mode
	Example

	Using Communication Interrupt
	Example
	Inputting String Variables

	Output of Data (Numeric and String)
	Sending Messages
	Specifying the Port for Messages:
	Formatting Messages
	Using the MG Command to Configure Terminals
	Summary of Message Functions

	Displaying Variables and Arrays
	Example - Printing a Variable and an Array element

	Interrogation Commands
	Using the PF Command to Format Response from Interrogation Commands
	Example
	Removing Leading Zeros from Response to Interrogation Commands
	Local Formatting of Response of Interrogation Commands

	Formatting Variables and Array Elements
	Local Formatting of Variables

	Converting to User Units

	Hardware I/O
	Digital Outputs
	Example- Set Bit and Clear Bit
	Example- Output Bit
	Example- Output Port
	Example - Turn on output after move

	Digital Inputs
	Example - Using Inputs to control program flow
	Example - Start Motion on Switch

	The Auxiliary Encoder Inputs
	Input Interrupt Function
	Example - Input Interrupt

	Analog Inputs
	Example - Position Follower (Point-to-Point)
	Example - Position Follower (Continuous Move)

	Extended I/O of the DMC-2x00 Controller
	Configuring the I/O of the DMC-2x00
	Saving the State of the Outputs in Non-Volatile Memory
	Accessing Extended I/O
	Interfacing to Grayhill or OPTO-22 G4PB24

	Example Applications
	Wire Cutter
	A-B Table Controller
	Speed Control by Joystick
	Position Control by Joystick
	Backlash Compensation by Sampled Dual-Loop

	Introduction
	Hardware Protection
	Output Protection Lines
	Input Protection Lines

	Software Protection
	Programmable Position Limits
	Example

	Off-On-Error
	Example

	Automatic Error Routine
	Example

	Limit Switch Routine
	Example

	Chapter 9 Troubleshooting
	Overview
	Installation
	Communication
	Stability
	Operation

	Chapter 10 Theory of Operation
	Overview
	Operation of Closed-Loop Systems
	System Modeling
	Motor-Amplifier
	Voltage Drive
	Current Drive
	Velocity Loop

	Encoder
	DAC
	Digital Filter
	ZOH

	System Analysis
	System Design and Compensation
	The Analytical Method
	Equivalent Filter Form

	Appendices
	Electrical Specifications
	Servo Control
	Stepper Control
	Input / Output
	Power

	Performance Specifications
	Minimum Servo Loop Update Time:

	Fast Update Rate Mode
	Connectors for DMC-2x00 Main Board
	DMC-2x00 Axes A-D High Density Connector
	DMC-2x00 Axes E-H High Density Connector
	DMC-2x00 Auxiliary Encoder 36 Pin High Density Connector
	DMC-2x00 Extended I/O 80 Pin High Density Connector
	RS-232-Main Port
	RS-232-Auxiliary Port
	USB - InUSB - Out
	Ethernet

	Cable Connections for DMC-2x00
	Standard RS-232 Specifications
	25 pin Serial Connector (Male, D-type)
	9 Pin Serial Connector (Male, D-type)

	DMC-2x00 Serial Cable Specifications
	
	Cable to Connect Computer 25 pin to Main Serial Port

	Cable to Connect Computer 9 pin to Main Serial Port Cable (9 pin)
	Cable to Connect Computer 25 pin to Auxiliary Serial Port Cable (9 pin)
	Cable to Connect Computer 9 pin to Auxiliary Serial Port Cable (9 pin)

	Pin-Out Description for DMC-2x00
	
	Outputs
	Inputs

	Jumper Description for DMC-2x00
	Dimensions for DMC-2x00
	Accessories and Options
	ICM-2900 Interconnect Module
	ICM-2900 Drawing:

	ICM-2908 Interconnect Module
	ICM-2908 Drawing:
	PCB Layout of the ICM-2900:

	ICM-1900 Interconnect Module
	Features
	ICM-1900 Drawing:

	AMP-19x0 Mating Power Amplifiers
	Features
	Specifications

	Opto-Isolated Outputs for ICM-2900 / ICM-1900 / AMP-19x0
	Standard Opto-Isolation and High Current Opto-isolation:

	Configuring the Amplifier Enable for ICM-2900 / ICM-1900
	-LAEN Option:
	-Changing the Amplifier Enable Voltage Level:

	IOM-1964 Opto-Isolation Module for Extended I/O
	Description:
	Overview
	Configuring Hardware Banks
	Digital Inputs
	High Power Digital Outputs
	Standard Digital Outputs
	Electrical Specifications
	Digital Inputs
	High Power Digital Outputs
	Standard Digital Outputs

	Relevant DMC Commands
	Screw Terminal Listing

	CB-50-100 Adapter Board
	Connectors:
	CB-50-100 Drawing:

	CB-50-80 Adapter Board
	Connectors:
	CB-50-80 Drawing:

	TERM-1500 Operator Terminal
	Features
	Description
	Specifications - Hand-Held
	Specifications - Panel Mount
	Keypad Maps - Hand-Held
	Single Key Output
	Shift Key Output
	CTRL Key Output
	Example:

	Keypad Map � Panel Mount – 6 columns x 5 rows
	Single Key Output
	Shift Key Output
	CTRL Key Output
	Escape Commands
	Cursor Movement Commands
	Erasing Display
	Sounds
	Cursor Style
	Key Clicks (audible sounds from terminal)
	Identify \(sends “TT!” then terminal firmware ve
	Cursor Position

	Configuration
	Default Configuration:

	Function Keys
	Default Function Keys

	Input/Output of Data – DMC-2x00 Commands
	Example:
	Example:
	6-Pin Modular Connector
	9-Pin D Adaptor - Male (For P2)

	Ordering Information

	Coordinated Motion - Mathematical Analysis
	Example- Communicating with OPTO-22 SNAP-B3000-ENET
	DMC-2x00/DMC-1500 Comparison
	List of Other Publications
	Training Seminars
	Contacting Us
	WARRANTY

	Index

