
 

USER MANUAL 

 

DMC-2x00 

 Manual Rev. 1.7 

 
 
 
 
 
 
 
 

By Galil Motion Control, Inc. 

 
 

 
 
 

Galil Motion Control, Inc. 
3750 Atherton Road 

Rocklin, California  95765 
Phone:  (916) 626-0101 

Fax:  (916) 626-0102 
Internet Address: support@galilmc.com 

URL: www.galilmc.com 
 

Rev 07/03 
 



 

 

Using This Manual 
This user manual provides information for proper operation of the DMC-2x00 controller.  A separate 
supplemental manual, the Command Reference, contains a description of the commands available for 
use with this controller.   

Your DMC-2x00 motion controller has been designed to work with both servo and stepper type 
motors.  Installation and system setup will vary depending upon whether the controller will be used 
with stepper motors or servo motors.  To make finding the appropriate instructions faster and easier, 
icons will be next to any information that applies exclusively to one type of system.  Otherwise, 
assume that the instructions apply to all types of systems.  The icon legend is shown below. 

 

 
Attention: Pertains to servo motor use. 

  

 
Attention: Pertains to stepper motor use. 

  

2x80  Attention: Pertains to controllers with more than 4 axes. 

 

Please note that many examples are written for the DMC-2x40 four-axes controller or the DMC-2x80 
eight axes controller.   Users of the DMC-2x30 3-axis controller, DMC-2x20 2-axes controller or 
DMC-2x10 1-axis controller should note that the DMC-2x30 uses the axes denoted as XYZ, the DMC-
2x20 uses the axes denoted as XY, and the DMC-2x10 uses the X-axis only. 

Examples for the DMC-2x80 denote the axes as A,B,C,D,E,F,G,H.  Users of the DMC-2x50 5-axes 
controller.  DMC-2x60 6-axes controller or DMC-2x70, 7-axes controller should note that the DMC-
2x50 denotes the axes as A,B,C,D,E, the DMC-2x60 denotes the axes as A,B,C,D,E,F and the DMC-
2x70 denotes the axes as A,B,C,D,E,F,G.  The axes A,B,C,D may be used interchangeably with 
A,B,C,D. 

 

WARNING:  Machinery in motion can be dangerous!  It is the responsibility of the user to design 
effective error handling and safety protection as part of the machinery.  Galil shall not be liable or 
responsible for any incidental or consequential damages. 

 



DMC-2X00 Contents   i 

Contents 

Using This Manual ....................................................................................................................ii 

Contents i 

Chapter 1 Overview 1 
Introduction ...............................................................................................................................1 
Overview of Motor Types..........................................................................................................1 

Standard Servo Motor with +/- 10 Volt Command Signal ..........................................2 
Brushless Servo Motor with Sinusoidal Commutation................................................2 
Stepper Motor with Step and Direction Signals ..........................................................2 

Overview of Amplifiers .............................................................................................................2 
Amplifiers in Current Mode ........................................................................................2 
Amplifiers in Velocity Mode.......................................................................................3 
Stepper Motor Amplifiers............................................................................................3 

DMC-2x00 Functional Elements ...............................................................................................3 
Microcomputer Section ...............................................................................................3 
Motor Interface............................................................................................................3 
Communication ...........................................................................................................4 
General I/O..................................................................................................................4 
System Elements .........................................................................................................4 
Motor...........................................................................................................................4 
Amplifier (Driver) .......................................................................................................4 
Encoder........................................................................................................................5 
Watch Dog Timer ........................................................................................................5 

Chapter 2  Getting Started 7 
The DMC-2x00 Main Board......................................................................................................7 
The DMC-2000 Daughter Board ...............................................................................................8 
The DMC-2200 Daughter Board ...............................................................................................9 
Elements You Need .................................................................................................................10 
Installing the DMC-2x00.........................................................................................................12 

Step 1. Determine Overall Motor Configuration .......................................................12 
Step 2. Install Jumpers on the DMC-2x00.................................................................13 
Step 3a. Configure DIP switches on the DMC-2000.................................................14 
Step 3b. Configure DIP switches on the DMC-2100.................................................15 
Step 3c. Configure DIP switches on the DMC-2200.................................................15 
Step 4. Install the Communications Software............................................................16 
Step 5. Connect AC Power to the Controller.............................................................16 
Step 6. Establish Communications with Galil Software............................................17 
Step 7. Determine the Axes to be Used for Sinusoidal Commutation.......................19 



ii  •  Contents DMC-2X00  

Step 8. Make Connections to Amplifier and Encoder. ..............................................20 
Step 9a. Connect Standard Servo Motors ..................................................................22 
Step 9b. Connect Sinusoidal Commutation Motors...................................................25 
Step 9c. Connect Step Motors ...................................................................................28 
Step 10. Tune the Servo System................................................................................28 

Design Examples .....................................................................................................................29 
System Set-up............................................................................................................29 
Profiled Move............................................................................................................30 
Multiple Axes ............................................................................................................30 
Objective: Move the four axes independently. ..........................................................30 
Independent Moves ...................................................................................................30 
The motion parameters may be specified independently as illustrated below...........30 
Position Interrogation ................................................................................................30 
The position error, which is the difference between the commanded position and the 
actual position can be interrogated with the instruction TE. .....................................31 
Absolute Position ......................................................................................................31 
Velocity Control ........................................................................................................31 
Operation Under Torque Limit..................................................................................32 
Interrogation ..............................................................................................................32 
Operation in the Buffer Mode ...................................................................................32 
Using the On-Board Editor........................................................................................32 
Motion Programs with Loops....................................................................................33 
Motion Programs with Trippoints .............................................................................33 
Control Variables ......................................................................................................34 
Linear Interpolation ...................................................................................................34 
Circular Interpolation ................................................................................................35 

Chapter 3 Connecting Hardware 36 
Overview .................................................................................................................................36 
Using Optoisolated Inputs .......................................................................................................36 

Limit Switch Input.....................................................................................................36 
Home Switch Input....................................................................................................37 
Abort Input ................................................................................................................37 
Reset Input.................................................................................................................38 
Uncommitted Digital Inputs ......................................................................................38 

Wiring the Opto-Isolated Inputs ..............................................................................................38 
The Opto-Isolation Common Point ...........................................................................38 
Using an Isolated Power Supply................................................................................39 
Bypassing the Opto-Isolation: ...................................................................................40 

Analog Inputs ..........................................................................................................................40 
Amplifier Interface ..................................................................................................................40 
TTL Inputs...............................................................................................................................41 

The Auxiliary Encoder Inputs ...................................................................................41 
TTL Outputs ............................................................................................................................42 

General Use Outputs..................................................................................................42 
Output Compare ........................................................................................................42 
Error Output ..............................................................................................................43 

Extended I/O of the DMC-2x00 Controller .............................................................................43 

Chapter 4  Communication 44 
Introduction .............................................................................................................................44 
RS232 Ports .............................................................................................................................44 

RS232 - Main Port {P1} DATATERM.....................................................................44 
RS232 - Auxiliary Port {P2} DATASET ..............................................................44 



DMC-2X00 Contents   iii 

*RS422 - Main Port {P1}..........................................................................................45 
*RS422 - Auxiliary Port {P2}...................................................................................45 
RS-232 Configuration ...............................................................................................45 

Ethernet Configuration (DMC-2100/2200 only) .....................................................................47 
Communication Protocols .........................................................................................47 
Addressing.................................................................................................................48 
Communicating with Multiple Devices.....................................................................49 
Multicasting...............................................................................................................51 
Using Third Party Software.......................................................................................51 

Data Record .............................................................................................................................51 
Data Record Map.......................................................................................................52 
Explanation of Status Information and Axis Switch Information..............................54 
Notes Regarding Velocity and Torque Information ..................................................56 
QZ Command ............................................................................................................56 

Controller Response to Commands .........................................................................................56 
Unsolicited Messages Generated by Controller.......................................................................57 
Galil Software Tools and Libraries..........................................................................................57 

Chapter 5  Command Basics 58 
Introduction .............................................................................................................................59 
Command Syntax - ASCII.......................................................................................................59 

Coordinated Motion with more than 1 axis ...............................................................60 
Command Syntax - Binary ......................................................................................................61 

Binary Command Format ..........................................................................................61 
Binary Command Table ............................................................................................62 

Controller Response to DATA ................................................................................................63 
Interrogating the Controller .....................................................................................................64 

Interrogation Commands ...........................................................................................64 
Summary of Interrogation Commands ......................................................................64 
Interrogating Current Commanded Values................................................................64 
Operands....................................................................................................................64 
Command Summary..................................................................................................65 

Chapter 6  Programming Motion 67 
Overview .................................................................................................................................67 
Independent Axis Positioning..................................................................................................68 

Command Summary - Independent Axis ..................................................................69 
Operand Summary - Independent Axis .....................................................................69 
Examples ...................................................................................................................70 

Independent Jogging................................................................................................................71 
Command Summary - Jogging ..................................................................................71 
Operand Summary - Independent Axis .....................................................................72 
Examples ...................................................................................................................72 

Linear Interpolation Mode .......................................................................................................73 
Specifying the Coordinate Plane ...............................................................................73 
Specifying Linear Segments......................................................................................73 
Additional Commands...............................................................................................74 
Command Summary - Linear Interpolation...............................................................75 
Operand Summary - Linear Interpolation..................................................................75 
Example.....................................................................................................................75 

Vector Mode: Linear and Circular Interpolation Motion.........................................................78 
Specifying the Coordinate Plane ...............................................................................78 
Specifying Vector Segments .....................................................................................79 
Additional commands................................................................................................79 



iv  •  Contents DMC-2X00  

Command Summary - Coordinated Motion Sequence ..............................................80 
Operand Summary - Coordinated Motion Sequence.................................................81 
Example.....................................................................................................................81 

Electronic Gearing ...................................................................................................................83 
Command Summary - Electronic Gearing ................................................................84 

Electronic Cam ........................................................................................................................85 
Command Summary - Electronic CAM ....................................................................88 
Operand Summary - Electronic CAM .......................................................................89 
Example.....................................................................................................................89 

Contour Mode..........................................................................................................................90 
Specifying Contour Segments ...................................................................................90 
Additional Commands...............................................................................................91 
Command Summary - Contour Mode .......................................................................92 
General Velocity Profiles ..........................................................................................92 
Example.....................................................................................................................92 

Virtual Axis .............................................................................................................................95 
Ecam master example................................................................................................95 
Sinusoidal Motion Example ......................................................................................95 

Stepper Motor Operation .........................................................................................................96 
Specifying Stepper Motor Operation.........................................................................96 
Stepper Motor Smoothing .........................................................................................96 
Monitoring Generated Pulses vs. Commanded Pulses ..............................................96 
Motion Complete Trip point......................................................................................97 
Using an Encoder with Stepper Motors.....................................................................97 
Command Summary - Stepper Motor Operation.......................................................97 
Operand Summary - Stepper Motor Operation..........................................................98 

Dual Loop (Auxiliary Encoder) ...............................................................................................98 
Additional Commands for the Auxiliary Encoder.....................................................99 
Backlash Compensation ............................................................................................99 
Example.....................................................................................................................99 

Motion Smoothing .................................................................................................................100 
Using the IT and VT Commands:............................................................................101 
Example...................................................................................................................101 
Using the KS Command (Step Motor Smoothing):.................................................102 

Homing ..................................................................................................................................103 
Example...................................................................................................................103 
Command Summary - Homing Operation...............................................................105 
Operand Summary - Homing Operation..................................................................105 

High Speed Position Capture (The Latch Function) ..............................................................105 
Example...................................................................................................................106 

Chapter 7 Application Programming 107 
Overview ...............................................................................................................................107 
Using the DOS Editor to Enter Programs (DMC-2000 only) ................................................107 

Edit Mode Commands.............................................................................................108 
Example...................................................................................................................108 

Program Format .....................................................................................................................109 
Using Labels in Programs .......................................................................................109 
Special Labels..........................................................................................................109 
Commenting Programs............................................................................................110 

Executing Programs - Multitasking .......................................................................................111 
Debugging Programs .............................................................................................................112 

Trace Commands ( DMC-2100/2200 only).............................................................112 
Error Code Command..............................................................................................113 
Stop Code Command...............................................................................................113 



DMC-2X00 Contents   v 

RAM Memory Interrogation Commands ................................................................113 
Operands..................................................................................................................113 
Example...................................................................................................................113 

Program Flow Commands .....................................................................................................114 
Event Triggers & Trippoints....................................................................................114 
Conditional Jumps...................................................................................................118 
If, Else, and Endif....................................................................................................120 
Subroutines..............................................................................................................122 
Stack Manipulation..................................................................................................122 
Auto-Start Routine ..................................................................................................122 
Automatic Subroutines for Monitoring Conditions .................................................123 

Mathematical and Functional Expressions ............................................................................128 
Mathematical Operators ..........................................................................................128 
Bit-Wise Operators..................................................................................................128 
Functions .................................................................................................................130 

Variables................................................................................................................................130 
Programmable Variables .........................................................................................131 

Operands................................................................................................................................132 
Special Operands (Keywords) .................................................................................132 

Arrays ....................................................................................................................................133 
Defining Arrays.......................................................................................................133 
Assignment of Array Entries ...................................................................................133 
Uploading and Downloading Arrays to On Board Memory....................................134 
Automatic Data Capture into Arrays .......................................................................134 
Deallocating Array Space........................................................................................136 

Input of Data (Numeric and String) .......................................................................................136 
Input of Data............................................................................................................136 
Operator Data Entry Mode ......................................................................................137 
Using Communication Interrupt..............................................................................138 

Output of Data (Numeric and String) ....................................................................................139 
Sending Messages ...................................................................................................140 
Displaying Variables and Arrays.............................................................................141 
Interrogation Commands .........................................................................................141 
Formatting Variables and Array Elements ..............................................................143 
Converting to User Units.........................................................................................144 

Hardware I/O .........................................................................................................................144 
Digital Outputs ........................................................................................................144 
Digital Inputs...........................................................................................................145 
The Auxiliary Encoder Inputs .................................................................................146 
Input Interrupt Function ..........................................................................................146 
Analog Inputs ..........................................................................................................147 

Extended I/O of the DMC-2x00 Controller ...........................................................................148 
Configuring the I/O of the DMC-2x00....................................................................148 
Saving the State of the Outputs in Non-Volatile Memory.......................................149 
Accessing Extended I/O ..........................................................................................149 
Interfacing to Grayhill or OPTO-22 G4PB24 .........................................................150 

Example Applications............................................................................................................150 
Wire Cutter ..............................................................................................................150 
A-B Table Controller...............................................................................................151 
Speed Control by Joystick .......................................................................................153 
Position Control by Joystick....................................................................................154 
Backlash Compensation by Sampled Dual-Loop ....................................................154 

Introduction ...........................................................................................................................157 
Hardware Protection ..............................................................................................................157 

Output Protection Lines...........................................................................................157 
Input Protection Lines .............................................................................................157 



vi  •  Contents DMC-2X00  

Software Protection ...............................................................................................................158 
Programmable Position Limits ................................................................................158 
Off-On-Error ...........................................................................................................159 
Automatic Error Routine .........................................................................................159 
Limit Switch Routine ..............................................................................................160 

Chapter 9 Troubleshooting 161 
Overview ...............................................................................................................................161 
Installation .............................................................................................................................161 
Communication......................................................................................................................162 
Stability..................................................................................................................................162 
Operation ...............................................................................................................................162 

Chapter 10 Theory of Operation 163 
Overview ...............................................................................................................................163 
Operation of Closed-Loop Systems .......................................................................................165 
System Modeling ...................................................................................................................166 

Motor-Amplifier ......................................................................................................167 
Encoder....................................................................................................................169 
DAC ........................................................................................................................170 
Digital Filter ............................................................................................................170 
ZOH.........................................................................................................................171 

System Analysis.....................................................................................................................172 
System Design and Compensation.........................................................................................174 

The Analytical Method............................................................................................174 

Appendices 177 
Electrical Specifications ........................................................................................................177 

Servo Control ..........................................................................................................177 
Stepper Control........................................................................................................177 
Input / Output ..........................................................................................................177 
Power.......................................................................................................................178 

Performance Specifications ...................................................................................................178 
Minimum Servo Loop Update Time: ......................................................................178 

Fast Update Rate Mode .........................................................................................................179 
Connectors for DMC-2x00 Main Board ................................................................................180 

DMC-2x00 Axes A-D High Density Connector......................................................180 
DMC-2x00 Axes E-H High Density Connector ......................................................181 
DMC-2x00 Auxiliary Encoder 36 Pin High Density Connector .............................182 
DMC-2x00 Extended I/O 80 Pin High Density Connector .....................................182 
RS-232-Main Port ...................................................................................................184 
RS-232-Auxiliary Port.............................................................................................184 
USB - In     USB - Out.........................................................................................184 
Ethernet ...................................................................................................................185 

Cable Connections for DMC-2x00 ........................................................................................185 
Standard RS-232 Specifications ..............................................................................185 
DMC-2x00 Serial Cable Specifications...................................................................186 

Pin-Out Description for DMC-2x00 ......................................................................................188 
Jumper Description for DMC-2x00 .......................................................................................190 
Dimensions for DMC-2x00 ...................................................................................................191 
Accessories and Options........................................................................................................192 
ICM-2900 Interconnect Module ............................................................................................193 

ICM-2900 Drawing: ................................................................................................196 
ICM-2908 Interconnect Module ............................................................................................197 



DMC-2X00   vii 

ICM-2908 Drawing: ................................................................................................198 
PCB Layout of the ICM-2900: ................................................................................199 

ICM-1900 Interconnect Module ............................................................................................200 
Features ...................................................................................................................200 
ICM-1900 Drawing: ................................................................................................203 

AMP-19x0 Mating Power Amplifiers ...................................................................................203 
Features ...................................................................................................................203 
Specifications ..........................................................................................................204 

Opto-Isolated Outputs for ICM-2900 / ICM-1900 / AMP-19x0............................................204 
Standard Opto-Isolation and High Current Opto-isolation:.....................................204 

Configuring the Amplifier Enable for ICM-2900 / ICM-1900 ..............................................205 
-LAEN Option:........................................................................................................205 
-Changing the Amplifier Enable Voltage Level: .....................................................205 

IOM-1964 Opto-Isolation Module for Extended I/O.............................................................206 
Description: .............................................................................................................206 
Overview .................................................................................................................206 
Configuring Hardware Banks..................................................................................207 
Digital Inputs...........................................................................................................208 
High Power Digital Outputs ....................................................................................209 
Standard Digital Outputs .........................................................................................210 
Electrical Specifications ..........................................................................................211 
Relevant DMC Commands......................................................................................212 
Screw Terminal Listing ...........................................................................................212 

CB-50-100 Adapter Board.....................................................................................................215 
Connectors:..............................................................................................................215 
CB-50-100 Drawing: ...............................................................................................218 

CB-50-80 Adapter Board.......................................................................................................219 
Connectors:..............................................................................................................220 
CB-50-80 Drawing: .................................................................................................222 

TERM-1500 Operator Terminal ............................................................................................224 
Features ...................................................................................................................225 
Description ..............................................................................................................225 
Specifications - Hand-Held .....................................................................................225 
Specifications - Panel Mount...................................................................................226 
Keypad Maps - Hand-Held......................................................................................226 
Keypad Map - Panel Mount – 6 columns x 5 rows .................................................227 
Configuration...........................................................................................................228 
Function Keys..........................................................................................................229 
Input/Output of Data – DMC-2x00 Commands ......................................................229 
Ordering Information...............................................................................................230 

Coordinated Motion - Mathematical Analysis.......................................................................231 
Example- Communicating with OPTO-22 SNAP-B3000-ENET..........................................234 
DMC-2x00/DMC-1500 Comparison .....................................................................................237 
List of Other Publications ......................................................................................................238 
Training Seminars..................................................................................................................238 
Contacting Us ........................................................................................................................239 
WARRANTY ........................................................................................................................240 

Index 241 





DMC-2X00 Chapter 1 Overview   1  

Chapter 1 Overview 

Introduction 
The DMC-2x00 Series are Galil’s highest performance stand-alone controller.  The controller series 
offers many enhanced features including high speed communications, non-volatile program memory, 
faster encoder speeds, and improved cabling for EMI reduction. 

Each DMC-2x00 provides two communication channels: high speed RS-232 (2 channels up to 115K 
Baud) and Universal Serial Bus (12Mb/s) for the DMC-2000 or 10BaseT Ethernet for the DMC-2100 
and 100BaseT Ethernet for the DMC-2200.   

A 4Meg Flash EEPROM provides non-volatile memory for storing application programs, parameters, 
arrays and firmware.  New firmware revisions are easily upgraded in the field.  

The DMC-2x00 is available with up to eight axes in a single stand alone unit.  The DMC-2x10, 2x20,  
2x30, 2x40 are one thru four axes controllers and the DMC-2x50, 2x60, 2x70, 2x80 are five thru eight 
axes controllers. 

Designed to solve complex motion problems, the DMC-2x00 can be used for applications involving 
jogging, point-to-point positioning, vector positioning, electronic gearing, multiple move sequences, 
and contouring.  The controller eliminates jerk by programmable acceleration and deceleration with 
profile smoothing.  For smooth following of complex contours, the DMC-2x00 provides continuous 
vector feed of an infinite number of linear and arc segments.  The controller also features electronic 
gearing with multiple master axes as well as gantry mode operation. 

For synchronization with outside events, the DMC-2x00 provides uncommitted I/O, including 8 opto-
isolated digital inputs (16 inputs for DMC-2x50 thru DMC-2x80), 8 digital outputs (16 outputs for 
DMC-2x50 thru DMC-2x80), and 8 analog inputs for interface to joysticks, sensors, and pressure 
transducers.  The DMC-2x00 also has an additional 64 I/O.  Further I/O is available if the auxiliary 
encoders are not being used (2 inputs / each axis).  Dedicated optoisolated inputs are provided for 
forward and reverse limits, abort, home, and definable input interrupts.   

Commands can be sent in either Binary or ASCII.  Additional software is available for automatic-
tuning, trajectory viewing on a PC screen, CAD translation, and program development using many 
environments such as Visual Basic, C, C++ etc.  Drivers for DOS, Linux, Windows 3.1, 95, 98, 2000, 
ME and NT are available. 

Overview of Motor Types 
The DMC-2x00 can provide the following types of motor control: 

1.  Standard servo motors with +/- 10 volt command signals 

2.  Brushless servo motors with sinusoidal commutation 

3.  Step motors with step and direction signals 

4.  Other actuators such as hydraulics - For more information, contact Galil. 

The user can configure each axis for any combination of motor types, providing maximum flexibility. 



2  •Chapter 1 Overview  DMC-2X00  

Standard Servo Motor with +/- 10 Volt Command Signal 
The DMC-2x00 achieves superior precision through use of a 16-Bit motor command output DAC and 
a sophisticated PID filter that features velocity and acceleration feedforward, an extra pole filter and 
integration limits. 

The controller is configured by the factory for standard servo motor operation.  In this configuration, 
the controller provides an analog signal (+/- 10 volts) to connect to a servo amplifier.  This connection 
is described in Chapter 2. 

Brushless Servo Motor with Sinusoidal Commutation 
The DMC-2x00 can provide sinusoidal commutation for brushless motors (BLM).  In this 
configuration, the controller generates two sinusoidal signals for connection with amplifiers 
specifically designed for this purpose.   

Note: The task of generating sinusoidal commutation may be accomplished in the brushless motor 
amplifier.  If the amplifier generates the sinusoidal commutation signals, only a single command signal 
is required and the controller should be configured for a standard servo motor (described above). 

Sinusoidal commutation in the controller can be used with linear and rotary BLMs.  However, the 
motor velocity should be limited such that a magnetic cycle lasts at least 6 milliseconds with a standard 
update rate of 1 millisecond.  For faster motors, please contact the factory. 

To simplify the wiring, the controller provides a one-time, automatic set-up procedure.  When the 
controller has been properly configured, the brushless motor parameters may be saved in non-volatile 
memory.  

The DMC-2x00 can control BLMs equipped with Hall sensors as well as without Hall sensors.  If Hall 
sensors are available, once the controller has been setup, the brushless motor parameters may be saved 
in non-volatile memory.  In this case, the controller will automatically estimate the commutation phase 
upon reset.  This allows the motor to function immediately upon power up.  The Hall effect sensors 
also provide a method for setting the precise commutation phase.  Chapter 2 describes the proper 
connection and procedure for using sinusoidal commutation of brushless motors. 

Stepper Motor with Step and Direction Signals 
The DMC-2x00 can control stepper motors.  In this mode, the controller provides two signals to 
connect to the stepper motor: Step and Direction.  For stepper motor operation, the controller does not 
require an encoder and operates the stepper motor in an open loop fashion.  Chapter 2 describes the 
proper connection and procedure for using stepper motors. 

Overview of Amplifiers 
The amplifiers should be suitable for the motor and may be linear or pulse-width-modulated.  An 
amplifier may have current feedback, voltage feedback or velocity feedback. 

Amplifiers in Current Mode 
Amplifiers in current mode should accept an analog command signal in the +/-10 volt range.  The 
amplifier gain should be set such that a +10V command will generate the maximum required current.  
For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V.   



DMC-2X00 Chapter 1 Overview   3  

Amplifiers in Velocity Mode 
For velocity mode amplifiers, a command signal of 10 volts should run the motor at the maximum 
required speed.  The velocity gain should be set such that an input signal of 10V runs the motor at the 
maximum required speed. 

Stepper Motor Amplifiers 

 
For step motors, the amplifiers should accept step and direction signals. 

DMC-2x00 Functional Elements 
The DMC-2x00 circuitry can be divided into the following functional groups as shown in Figure 1.1 
and discussed below. 

 WATCHDOG TIMER

68331
MICROCOMPUTER

WITH
4 Meg RAM

4 Meg FLASH EEPROM

HIGH-SPEED
MOTOR/ENCODER 

INTERFACE
FOR

A,B,C,D

I/O INTERFACE

USB/ETHERNET 

RS-232 /
RS-422 

8 UNCOMMITTED
ANALOG INPUTS

HIGH-SPEED LATCH FOR EACH AXIS

8 PROGRAMMABLE,
OPTOISOLATED

INPUTS

8 PROGRAMMABLE 
OUTPUTS

ISOLATED LIMITS AND
HOME INPUTS
MAIN ENCODERS
AUXILIARY ENCODERS

+/- 10 VOLT OUTPUT FOR
SERVO MOTORS
PULSE/DIRECTION OUTPUT
FOR STEP MOTORS

HIGH SPEED ENCODER
COMPARE OUTPUT64 Configurable I/O 

 
Figure 1.1 - DMC-2x00 Functional Elements 

Microcomputer Section 
The main processing unit of the DMC-2x00 is a specialized 32-Bit Motorola 68331 Series 
Microcomputer with 4 Meg RAM and 4 Meg Flash EEPROM. The RAM provides memory for 
variables, array elements and application programs.  The flash EEPROM provides non-volatile storage 
of variables, programs, and arrays.  It also contains the DMC-2x00 firmware. 

Motor Interface 
Galil’s GL-1800 custom, sub-micron gate array performs quadrature decoding of each encoder at up to 
12 MHz.  For standard servo operation, the controller generates a +/-10 volt analog signal (16 Bit 
DAC).  For sinusoidal commutation operation, the controller uses two DACs to generate two +/-10 
volt analog signals.  For stepper motor operation, the controller generates a step and direction signal.   



4  •Chapter 1 Overview  DMC-2X00  

Communication 
The communication interface with the DMC-2x00 consists of high speed RS-232 and USB or high 
speed RS-232 and Ethernet.  The USB channel accepts based rates up to 12Mb/sec and the two RS-232 
channels can generate up to 115K. 

General I/O 
The DMC-2x00 provides interface circuitry for 8 bi-directional, optoisolated inputs, 8 TTL outputs and 
8 analog inputs with 12-Bit ADC (16-Bit optional).  The DMC-2x00 also has an additional 64 I/O and 
unused auxiliary encoder inputs may also be used as additional inputs (2 inputs / each axis).  The 
general inputs can also be used as high speed latches for each axis.  A high speed encoder compare 
output is also provided. 

2x80  
The DMC-2x50 through DMC-2x80 controller provides an additional 8 optoisolated inputs and 8 TTL 
outputs. 

System Elements 
As shown in Fig. 1.2, the DMC-2x00 is part of a motion control system which includes amplifiers, 
motors and encoders.  These elements are described below. 

 

Computer DMC-2x00 Controller Amplifier (Driver)

Power Supply

Encoder Motor

 
Figure 1.2 - Elements of Servo systems 

Motor 
A motor converts current into torque which produces motion.  Each axis of motion requires a motor 
sized properly to move the load at the required speed and acceleration.  (Galil's "Motion Component 
Selector" software can help you with motor sizing).  Contact Galil at 800-377-6329 if you would like 
this product. 

The motor may be a step or servo motor and can be brush-type or brushless, rotary or linear.  For step 
motors, the controller can be configured to control full-step, half-step, or microstep drives.  An encoder 
is not required when step motors are used. 

Amplifier (Driver) 
For each axis, the power amplifier converts a +/-10 volt signal from the controller into current to drive 
the motor.   For stepper motors, the amplifier converts step and direction signals into current.  The 
amplifier should be sized properly to meet the power requirements of the motor.  For brushless motors, 



DMC-2X00 Chapter 1 Overview   5  

an amplifier that provides electronic commutation is required or the controller must be configured to 
provide sinusoidal commutation.  The amplifiers may be either pulse-width-modulated (PWM) or 
linear.  They may also be configured for operation with or without a tachometer.  For current 
amplifiers, the amplifier gain should be set such that a 10 volt command generates the maximum 
required current.  For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V.  
For velocity mode amplifiers, 10 volts should run the motor at the maximum speed. 

Encoder 
An encoder translates motion into electrical pulses which are fed back into the controller.  The DMC-
2x00 accepts feedback from either a rotary or linear encoder.  Typical encoders provide two channels in 
quadrature, known as CHA and CHB.  This type of encoder is known as a quadrature encoder.  
Quadrature encoders may be either single-ended (CHA and CHB) or differential (CHA,CHA- and 
CHB,CHB-).  The DMC-2x00 decodes either type into quadrature states or four times the number of 
cycles.  Encoders may also have a third channel (or index) for synchronization.  

For stepper motors, the DMC-2x00 can also interface to encoders with pulse and direction signals. 

There is no limit on encoder line density, however, the input frequency to the controller must not 
exceed 3,000,000 full encoder cycles/second (12,000,000 quadrature counts/sec).  For example, if the 
encoder line density is 10000 cycles per inch, the maximum speed is 300 inches/second.  If higher 
encoder frequency is required, please consult the factory. 

The standard voltage level is TTL (zero to five volts), however, voltage levels up to 12 volts are 
acceptable.  (If using differential signals, 12 volts can be input directly to the DMC-2x00.  Single-
ended 12 volt signals require a bias voltage input to the complementary inputs). 

The DMC-2x00 can accept analog feedback instead of an encoder for any axis.   

To interface with other types of position sensors such as resolvers or absolute encoders, Galil can 
customize the controller and command set.  Please contact Galil and talk to one of our applications 
engineers about your particular system requirements. 

Watch Dog Timer 
The DMC-2x00 provides an internal watch dog timer which checks for proper microprocessor 
operation.  The timer toggles the Amplifier Enable Output (AMPEN) which can be used to switch the 
amplifiers off in the event of a serious DMC-2x00 failure.  The AMPEN output is normally high.  
During power-up and if the microprocessor ceases to function properly, the AMPEN output will go 
low.  The error light will also turn on at this stage.  A reset is required to restore the DMC-2x00 to 
normal operation.  Consult the factory for a Return Materials Authorization (RMA) Number if your 
DMC-2x00 is damaged. 



6  •Chapter 1 Overview  DMC-2X00  

                        THIS PAGE LEFT BLANK INTENTIONALLY 



DMC-2X00 Chapter 2  Getting Started   7  

 

Chapter 2  Getting Started 

The DMC-2x00 Main Board 
 
 

GL-1800 

Motorola
68331

GL-1800

DMC-2000
REV A

GALIL MOTION CONTROL

SRAM

EEPROM

1 AUX ENCODERS AXES A-D (X-W)J5 J1

MADE IN USA 

J9 AXES E-H

J2

JP5 

SMA(X) 
SMB(Y) 
SMC(Z) 

SMD(W) 
OPT1 

SW1 

+5V+12VGND-12V +5V

||| ||||| ||||| 
*AH-9999* 

SRAM
JP7 

SME 
SMF 
SMG 
SMH 

OPT2 

AXES E-H 
100 pin high density connector 
AMP part # 2-178238-9

AXES A-D
100 pin high density connector
AMP part # 2-178238-9AUX Encoder inputs

36 pin high density connector

9.50 "

Serial number label

5.80"

ADS7806 

Stepper motor
configuration
header

Reset
Switch

Error, 
Power 
LED's 

MicroprocessorPower connector
6 pin Molex

Jumper to 
connect 

optoisolators to 
onboard 5V 

supply 

Jumper Master 
Reset to clear 

EEPROM 

JP1 
MASTER RESET
UPGRADE 
* 

JP3 
LSCOM 
INCOM 

Stepper Motor 
configuration 

header 
Analog to Digital
Converter IC
7806 - 12 bit
7807 - 16 bit

Communications 
Daughterboard 

connector  
 

Figure 2-1 - Outline of the main board of the DMC-2x00 



8  • Chapter 2  Getting Started DMC-2X00  

The DMC-2000 Daughter Board 
 

 

J4

CMB-2001 REV C
USB DAUGHTER CARD

GALIL MOTION CONTROL

U9

J6 M
R

S
T

X
O

N
 X

O
F

H
S

H
K

9600
19.2
38A

2
A

1
A

0
U

S
B

EXTENDED I/O

J1

J3

M
A

D
E

 IN
 U

S
A

1
A1
B1
C1

AUX

JP
4

JP
3

R
23

2
R

23
2

R
23

2
R

48
5

TE
R

M

MAIN J5

USB IN USB OUT

TE
R

M
R

48
5

R
23

2
R

23
2

R
23

2

R
42

2 S  8

8 S

D1

USB Communications
Status LED

M
C

1489

M
C

1488

U7U2 U6
U1

J2

100 pin connector
(attaches to DMC-2000

Main board)

AUX Serial port
DB-9 Female

MAIN Serial port
DB-9 Male 80 pin high

density connector
for extended I/O

USB type B
connector

Configuration DIP
Switches

USB type A
connector (x2)

3.94"

7.85 "

2.53"

RS-232 buffer
IC's

 
 

Figure 2-2 - Outline of the DMC-2000 Daughter Board 



DMC-2X00 Chapter 2  Getting Started   9  

The DMC-2200 Daughter Board 
 

 

D1 D2J2

JP3

U
14

JP4
JP5

U15 U16
U6 U4

U
1

J8
A1
B1
C1J7

10  BASE-F
RECEIVER

10 BASE-2

10 BASE-F
TRANSMITTER

100 BASE-T

AUX SERIAL PORT
DB-9 FEMALE

MAIN SERIAL PORT
DB-9 MALE

CONFIGURATION
DIP SWITCHES

80 PIN HIGH DENSITY
CONNECTOR FOR
EXTENDED I/O

COMMUNICATIONS
STATUS LED

100 PIN
CONNECTOR
(ATTACHES TO
DMC-2000 MAIN
BOARD)

CMB-21002  REV  A
GALIL MOTION CONTROL

JP4

JP5

TR
M

18
5

23
2

23
2

23
2 S 8 42
2

TR
M

48
5

23
2

23
2

23
2 S 8

1

1

9.5"

3.
94

"

 
 

Figure 2-3B - Outline of the DMC-2200 Daughter Board 



10  • Chapter 2  Getting Started DMC-2X00  

 

Elements You Need 
 

GALIL

ICM-2900

ICM-2908

ICM-2900

0 1 32 764 5

IOM-1964-80

Power Cable (Included
with the controller)

ICM-2900
Provides Connection to
Signals for Axes E-H

ICM-2908
Provides Connection to All
Auxiliary Encoder Signals

CABLE-36-1M (1METER)
OR

CABLE-36-4M (4METER)

CABLE-100-1M
OR

CABLE-100-4M

Cable 9-PinD
Main Serial Port to

Computer

Auxiliary Serial Port
Connection

(System Dependent
Cable)

ICM-2900
Connection to
Signals for Axes A-D

IOM-1964-80
Provides Opto-Isolation
and Interconnection for

Extended I/O

DMC-2000

CABLE-80-1M (1Meter)
OR

CABLE-80-4M (4Meter)

CABLE-USB-2M
OR

CABLE-USB-3M

 
 
Figure 2-4 Recommended System Elements of DMC-2000 



DMC-2X00 Chapter 2  Getting Started   11  

ICM-2900

ICM-2908

ICM-2900

0 1 32 764 5

IOM-1964-80

GALIL

Power Cable (Included
with the controller)

ICM-2900
Provides Connection to
Signals for Axes E-H

ICM-2908
Provides Connection to All
Auxiliary Encoder Signals

CABLE-36-1M (1METER)
OR

CABLE-36-4M (4METER)

CABLE-100-1M
OR

CABLE-100-4M

Cable 9-PinD
Main Serial Port to

Computer

Auxiliary Serial Port
Connection

(System Dependent
Cable)

ICM-2900
Connection to
Signals for Axes A-D

IOM-1964-80
Provides Opto-Isolation
and Interconnection for

Extended I/O

DMC-2000

CABLE-80-1M (1Meter)
OR

CABLE-80-4M (4Meter)

100/10 BASE-T
Cable

 
 
Figure 2-5 Recommended System Elements of DMC-2100/DMC-2200 

 

For a complete system, Galil recommends the following elements: 

1a. DMC-2x10, 2x20, 2x30, or DMC-2x40 Motion Controller 

 or 

1b.  DMC-2x50, 2x60, 2x70 or DMC-2x80 

 

2a. (1) ICM-2900 and (1) CABLE-100 for controllers DMC-2x10 through DMC-2x40 

 or 

2b.  (2) ICM-2900's and (2) CABLE-100’s for controllers DMC-2x50 through DMC-2x80. 

 or 

2c.  An interconnect board provided by the user. 

 

3.  (1) IOM-1964 and (1) CABLE-80 for access to the extended I/O.  Only required if extended 
I/O will be used.  The CABLE-80 can also be converted for use with OPTO-22 or Grayhill 
I/O modules - consult Galil. 

4.  (1) ICM-2908 and (1) CABLE-36 for access to auxiliary encoders.  Only required if auxiliary 
encoders are needed. 



12  • Chapter 2  Getting Started DMC-2X00  

5.  Motor Amplifiers. 

6.  Power Supply for Amplifiers. 

7.  Brush or Brushless Servo motors with Optical Encoders or stepper motors. 

8.  PC (Personal Computer - RS232 or USB for DMC-2000 or Ethernet for DMC-2100) 

9a.  WSDK-16 or WSDK-32 (recommend for first time users.) 

 or 

9b.  DMCWIN16, DMCWIN32 or DMCDOS communication software. 

The WSDK software is highly recommended for first time users of the DMC-2x00.  It provides step-
by-step instructions for system connection, tuning and analysis. 

Installing the DMC-2x00 
Installation of a complete, operational DMC-2x00 system consists of 9 steps. 

Step 1.   Determine overall motor configuration. 

Step 2.   Install Jumpers on the DMC-2x00. 

Step 3a. Configure the DIP switches on the DMC-2000. 

Step 3b. Configure the DIP switches on the DMC-2100. 

Step 3c.  Configure the DIP switches on the DMC-2200 

Step 4.   Install the communications software.  

Step 5.   Connect AC power to controller. 

Step 6.   Establish communications with the Galil Communication Software. 

Step 7.   Determine the Axes to be used for sinusoidal commutation. 

Step 8.   Make connections to amplifier and encoder. 

Step 9a. Connect standard servo motors.   

Step 9b. Connect sinusoidal commutation motors 

Step 9c.  Connect step motors. 

Step 10.  Tune the servo system 

Step 1. Determine Overall Motor Configuration 
Before setting up the motion control system, the user must determine the desired motor configuration. 
The DMC-2x00 can control any combination of standard servo motors, sinusoidally commutated 
brushless motors, and stepper motors.  Other types of actuators, such as hydraulics can also be 
controlled, please consult Galil.   

The following configuration information is necessary to determine the proper motor configuration: 

Standard Servo Motor Operation: 
The DMC-2x00 has been setup by the factory for standard servo motor operation providing an analog 
command signal of +/- 10V.  No hardware or software configuration is required for standard servo 
motor operation. 



DMC-2X00 Chapter 2  Getting Started   13  

Sinusoidal Commutation: 
Sinusoidal commutation is configured through a single software command, BA.  This configuration 
causes the controller to reconfigure the number of available control axes. 

Each sinusoidally commutated motor requires two DACs.  In standard servo operation, the DMC-2x00 
has one DAC per axis.  In order to have the additional DAC for sinusoidal commutation, the controller 
must be designated as having one additional axis for each sinusoidal commutation axis.  For example, 
to control two standard servo axes and one axis of sinusoidal commutation, the controller will require a 
total of four DACs and the controller must be a DMC-2x40. 

Sinusoidal commutation is configured with the command, BA.  For example, BAA sets the A axis to 
be sinusoidally commutated.  The second DAC for the sinusoidal signal will be the highest available 
DAC on the controller.  For example: Using a DMC-2x40, the command BAA will configure the A 
axis to be the main sinusoidal signal and the 'D' axis to be the second sinusoidal signal. 

The BA command also reconfigures the controller to indicate that the controller has one less axis of 
'standard' control for each axis of sinusoidal commutation.  For example, if the command BAA is 
given to a DMC-2x40 controller, the controller will be re-configured to a DMC-2x30 controller.  By 
definition, a DMC-2x30 controls 3 axes: A,B and C.  The 'D' axis is no longer available since the 
output DAC is being used for sinusoidal commutation.   

Further instruction for sinusoidal commutation connections are discussed in Step 6. 

Stepper Motor Operation 
To configure the DMC-2x00 for stepper motor operation, the controller requires a jumper for each 
stepper motor and the command, MT, must be given.  The installation of the stepper motor jumper is 
discussed in the following section entitled "Installing Jumpers on the DMC-2x00".   Further instruction 
for stepper motor connections are discussed in Step 9. 

Step 2. Install Jumpers on the DMC-2x00 

Master Reset and Upgrade Jumpers 
JP1 on the main board contains two jumpers, MRST and UPGRD.  The MRST jumper is the Master 
Reset jumper.  When MRST is connected, the controller will perform a master reset upon PC power up 
or upon the reset input going low.   The MRST can also be set with the DIP switches on the outside of 
the controller.  Whenever the controller has a master reset, all programs, arrays, variables, and motion 
control parameters stored in EEPROM will be ERASED. 

The UPGRD jumper enables the user to unconditionally update the controller’s firmware.  This jumper 
is not necessary for firmware updates when the controller is operating normally, but may be necessary 
in cases of corrupted EEPROM.  EEPROM corruption should never occur, however, it is possible if 
there is a power fault during a firmware update.  If EEPROM corruption occurs, your controller may 
not operate properly.  In this case, install the UPGRD Jumper and use the update firmware function on 
the Galil Terminal to re-load the system firmware. 

Opto-Isolation Jumpers  
The inputs and limit switches are opto-isolated.  If you are not using an isolated supply, the internal 
+5V supply from the PC may be used to power the opto-isolators.  This is done by installing jumpers 
on JP3 on main board. 

 



14  • Chapter 2  Getting Started DMC-2X00  

 

 

 

Stepper Motor Jumpers 
For each axis that will used for stepper motor operation, the corresponding stepper mode (SM) jumper 
must be connected.  The stepper mode jumpers, labeled JP5 and JP7 are located directly beside the 
GL-1800 IC's on the main board (see the diagram of the DMC-2x00).  The individual jumpers are 
labeled SMA thru SMH and configure the controller for ‘Stepper Motors’ for the corresponding axes 
A-H when installed.  Note that the daughter board must be removed to access these jumpers.  Contact 
the Galil factory if stepper motor jumpers should be placed on your controller with each order for a 
special part number. 

(Optional) Motor Off Jumpers 
The state of the motor upon power up may be selected with the placement of a hardware jumper on the 
controller.  With a jumper installed at the MO location, the controller will be powered up in the “motor 
off” state.  The SH command will need to be issued in order for the motor to be enabled.  With no 
jumper installed, the controller will immediately enable the motor upon power up.  The MO command 
will need to be issued to turn the motor off. 

The MO jumper is always located on the same block of jumpers as the stepper motor jumpers (SM).  
This feature is only available to newer revision controllers.  Please consult Galil for adding this 
functionality to older revision controllers. 

Communications Jumpers for DMC-2000 
The Main and Auxiliary Serial Communication Ports are normally connected for RS-232 connection.  
The jumpers JP3 and JP4 on the DMC-2001 daughter-board allows the DMC-2000 to be configured 
for RS-422.  This can be specified as an option when the unit is purchased or the DMC-2000 may be 
re-configured by the user, please consult Galil for instructions.  Other serial communication protocols, 
such as RS-485, can be implemented as a special - consult Galil. 

Communications Jumpers for DMC-2100/DMC-2200 
The main and Auxiliary Serial Commutations Ports are normally connected for RS-232 connection.  
The jumpers JP4 and JP5 on the DMC-21001 daughter board allows the controller to be configured for 
RS-422.  This can be specified as an option when the unit is purchased or the controller may be re-
configured by the user, please consult Galil for instructions.  Other serial communications protocols, 
such as RS-485, can be implemented as a special - consult Galil.   

Step 3a. Configure DIP switches on the DMC-2000 
Located on the outside of the controller box is a set of 5 DIP switches.  When the controller is powered 
on or reset, the state of the dip switches are read. 

Switch 1 - Master Reset  
When this switch is on, the controller will perform a master reset upon PC power up.  Whenever the 
controller has a master reset, all programs and motion control parameters stored in EEPROM will be 
ERASED.  During normal operation, this switch should be off. 

Switch 2 - XON / XOFF 
When on, this switch will enable software handshaking (XON/XOFF) through the main serial port.   

Switch 3 - Hardware Handshake Mode 
When on, this switch will enable hardware handshaking through the main serial port.   



DMC-2X00 Chapter 2  Getting Started   15  

Switch 4, 5 and 6 - Main Serial Port Baud Rate 
The following table describes the baud rate settings: 

9600 19.2 3800 BAUD RATE 
ON ON OFF 1200 

ON OFF OFF 9600 

OFF ON OFF 19200 

OFF OFF ON 38400 

OFF ON ON 115200 

 

Switch 10 - USB 
When on, the controller will use the USB port as a default port for messages.  When off, the controller 
will use the RS-232 port as default.  When the firmware is updated, the controller will send the 
response (a colon), to the default port setting.  If this is not the same port that was used to download 
the firmware, the Galil software will not return control to the user.  In this case, the software will have 
to be re-started.   

Step 3b. Configure DIP switches on the DMC-2100 

Switch 1 - Master Reset  
When this switch is on, the controller will perform a master reset upon PC power up.  Whenever the 
controller has a master reset, all programs and motion control parameters stored in EEPROM will be 
ERASED.  During normal operation, this switch should be off. 

Switch 2 - XON / XOFF 
When on, this switch will enable software handshaking (XON/XOFF) through the main serial port.   

Switch 3 - Hardware Handshake Mode 
When on, this switch will enable hardware handshaking through the main serial port.   

Step 3c. Configure DIP switches on the DMC-2200 

Switch 1 - Master Reset  
When this switch is on, the controller will perform a master reset upon PC power up.  Whenever the 
controller has a master reset, all programs and motion control parameters stored in EEPROM will be 
ERASED.  During normal operation, this switch should be off. 

Switch 2 - XON / XOFF 
When on, this switch will enable software handshaking (XON/XOFF) through the main serial port.   

Switch 3 - Hardware Handshake Mode 
When on, this switch will enable hardware handshaking through the main serial port.   



16  • Chapter 2  Getting Started DMC-2X00  

Switch 4,5 and 6 - Main Serial Port Baud Rate 
The following table describes the baud rate settings: 

 

9600 19.2 3800 BAUD RATE 
ON ON OFF 1200 

ON OFF OFF 9600 

OFF ON OFF 19200 

OFF OFF ON 38400 

OFF ON ON 115200 

Switch 7-Option 
When OFF, the controller will use the auto-negotiate function to set the Ethernet connection speed.  
When the DIP switch is ON, the controller defaults to 10BaseT. 

Switch 8-Ethernet 
When ON, the controller will use the Ethernet port as the default port for unsolicited messages.  When 
OFF, the controller will use the RS-232 port as the default.  When the firmware is updated, the 
controller will send the response (a colon) to the default port setting.  If this is not the same port that 
was used to download the firmware, the Galil software will not return control to the user.   In this case, 
the software will have to be re-started. 

Step 4. Install the Communications Software 
After applying power to the computer, you should install the Galil software that enables 
communication between the controller and PC.   

Using Windows 98SE, NT, ME, 2000 or XP: 
The Galil Software CD-ROM will automatically begin the installation procedure when the CD-ROM is 
installed.  To install the basic communications software, run the Galil Software CD-ROM and choose 
DMC Smart Term.  This will install the Galil Smart Terminal, which can be used for communication. 

Step 5. Connect AC Power to the Controller 
Before applying power, connect the 100-pin cable between the DMC-2x00 and ICM-2900 interconnect 
module. The DMC-2x00 requires a single AC supply voltage, single phase, 50 Hz or 60 Hz. from 90 
volts to 260 volts. 

 

WARNING:  Dangerous voltages, current, temperatures and energy levels exist in this product and 
the associated amplifiers and servo motor(s).  Extreme caution should be exercised in the 
application of this equipment.  Only qualified individuals should attempt to install, set up and 
operate this equipment.  Never open the controller box when AC power is applied to it. 

The green power light indicator should go on when power is applied.  



DMC-2X00 Chapter 2  Getting Started   17  

Step 6. Establish Communications with Galil Software 

Communicating through the Main Serial Communications Port 
Connect the DMC-2x00 MAIN serial port to your computer via the Galil CABLE-9PIN-D (RS-232 
Cable). 

Using Galil Software for DOS (serial communication only) 
To communicate with the DMC-2000, type TALK2DMC at the prompt. Once you have established 
communication, the terminal display should show a colon, :.  If you do not receive a colon, press the 
carriage return.  If a colon prompt is not returned, there is most likely an incorrect setting of the serial 
communications port.  The user must ensure that the correct communication port and baud rate are 
specified when attempting to communicate with the controller.  Please note that the serial port on the 
controller must be set for handshake mode for proper communication with Galil software.  The user 
must also insure that the proper serial cable is being used, see appendix for pin-out of serial cable.   

Using Galil Software for Windows 
In order for the windows software to communicate with a Galil controller, the controller must be 
registered in the Windows Registry.  To register a controller, you must specify the model of the 
controller, the communication parameters, and other information.  The registry is accessed through the 
Galil software under the “File” menu in WSDK or under the “Tools” menu in the Galil Smart 
Terminal.   

The registry window is equipped with buttons to Add a New Controller, change the Properties of an 
existing controller, Delete a controller, or Find an Ethernet Controller.   

Use the “New Controller” button to add a new entry to the Registry.  You will need to supply the 
Galil Controller model (eg: DMC-2000).  Pressing the down arrow to the right of this field will reveal 
a menu of valid controller types.  You then need to choose serial or Ethernet connection. Remember, a 
DMC-2000 connected via USB is plug and play and should be automatically added to the registry 
upon connection.  The registry information will show a default Comm Port of 1 and a default Comm 
Speed of 19200 appears.  This information can be changed as necessary to reflect the computers 
Comm Port and the baud rate set by the dip switches on the front of the controller (default is 19200 
with HSHK on).  The registry entry also displays timeout and delay information.  These are advanced 
parameters which should only be modified by advanced users (see software documentation for more 
information). 

Once you have set the appropriate Registry information for your controller, Select OK and close the 
registry window.  You will now be able to communicate with the controller.   

If you are not properly communicating with the controller, the program will pause for 3-15 seconds 
and an error message will be displayed.  In this case, there is most likely an incorrect setting of the 
serial communications port or the serial cable is not connected properly.  The user must ensure that the 
correct communication port and baud rate are specified when attempting to communicate with the 
controller.  Please note that the serial port on the controller must be set for handshake mode for proper 
communication with Galil software.  The user must also insure that a “straight-through” serial cable is 
being used (NOT a Null Modem cable), see appendix for pin-out of serial cable.   

Once you establish communications, open up the Terminal and hit the “Enter” key.  You should 
receive a colon prompt.  Communicating with the controller is described in later sections. 

 

 

 

 



18  • Chapter 2  Getting Started DMC-2X00  

 

Using Non-Galil Communication Software 
The DMC-2x00 main serial port is configured as DATASET.  Your computer or terminal must be 
configured as a DATATERM for full duplex, no parity, 8 data bits, one start bit and one stop bit. 

Check to insure that the baud rate switches have been set to the desired baud rate as described above.   

Your computer needs to be configured as a "dumb" terminal which sends ASCII characters as they are 
typed to the DMC-2x00. 

 

Communicating through the Universal Serial Bus (USB) 
NOTE:  Galil Software only supports the use of the USB port under Windows 98SE, ME, 2000 and 
XP. 

Connect the USB cable from the computer to the USB IN port on the controller.  Since the controller 
has been powered on in the previous step, the computer will recognize the first connection to a Galil 
USB controller.  The computer will identify the USB controller and add it to the Windows Registry as 
a plug and play device. 

 

Communicating through the Ethernet 

Using Galil Software for Windows 
The controller must be registered in the Windows registry for the host computer to communicate with 
it.  The registry may be accessed via Galil software, such as WSDK or SmartTERM.  

From WSDK, the registry is accessed under the FILE menu.  From Smart TERM it is accessed under 
the TOOLS menu.  Use the NEW CONTROLLER button to add a new entry in the registry.  Choose 
DMC-2100 or DMC-2200 as the controller type.  Enter the IP address obtained from your system 
administrator.  Select the button corresponding to the UDP or TCP protocol in which you wish to 
communicate with the controller.  If the IP address has not been already assigned to the controller, 
click on ASSIGN IP ADDRESS. 

 

 

 

 

 

 

 

 

 

 

 

 

 



DMC-2X00 Chapter 2  Getting Started   19  

ASSIGN IP ADDRESS will check the controllers that are linked to the network to see which ones do 
not have an IP address.  The program will then ask you whether you would like to assign the IP 
address you entered to the controller with the specified serial number.  Click on YES to assign it, NO 
to move to next controller, or CANCEL to not save the changes.  If there are no controllers on the 
network that do not have an IP address assigned, the program will state this. 

When done registering, click on OK.  If you do not wish to save the changes, click on CANCEL.  

Once the controller has been register, select the correct controller from the list and click on OK. If the 
software successfully established communications with the controller, the registry entry will be 
displayed at the top of the screen. 

NOTE: The controller must be registered via an Ethernet connection. 

Sending Test Commands to the Terminal: 
After you connect your terminal, press <return> or the <enter> key on your keyboard.  In response to 
carriage return <return>, the controller responds with a colon, : 

Now type 

 TPA <return> 

This command directs the controller to return the current position of the A axis.  The controller should 
respond with a number such as 

 0000000 

Step 7. Determine the Axes to be Used for Sinusoidal 
Commutation 
* This step is only required when the controller will be used to control a brushless motor(s) with 
sinusoidal commutation. 

The command, BA is used to select the axes of sinusoidal commutation.  For example, BAAC sets A 
and C as axes with sinusoidal commutation.   

Notes on Configuring Sinusoidal Commutation: 
The command, BA, reconfigures the controller such that it has one less axis of 'standard' control for 
each axis of sinusoidal commutation.  For example, if the command BAA is given to a DMC-2x40 
controller, the controller will be re-configured to be a DMC-2x30 controller.  In this case the highest 
axis is no longer available except to be used for the 2nd phase of the sinusoidal commutation.  Note that 
the highest axis on a controller can never be configured for sinusoidal commutation.  

The DAC associated with the selected axis represents the first phase.  The second phase uses the 
highest available DAC.  When more than one axis is configured for sinusoidal commutation, the 
controller will assign the second phases to the DACs which have been made available through the axes 
reconfiguration.  The highest sinusoidal commutation axis will be assigned to the highest available 
DAC and the lowest sinusoidal commutation axis will be assigned to the lowest available DAC.  Note 
that the lowest axis is the A axis and the highest axis is the highest available axis for which the 
controller has been configured. 

Example: Sinusoidal Commutation Configuration using a DMC-2x70 
BAAC 

This command causes the controller to be reconfigured as a DMC-2x50 controller.  The A and C axes 
are configured for sinusoidal commutation.  The first phase of the A axis will be the motor command 
A signal.  The second phase of the A axis will be F signal.  The first phase of the C axis will be the 
motor command C signal.  The second phase of the C axis will be the motor command G signal. 



20  • Chapter 2  Getting Started DMC-2X00  

Step 8. Make Connections to Amplifier and Encoder. 
Once you have established communications between the software and the DMC-2x00, you are ready to 
connect the rest of the motion control system.  The motion control system typically consists of an 
ICM-2900 Interface Module, an amplifier for each axis of motion, and a motor to transform the current 
from the amplifier into torque for motion.  

If you are using an ICM-2900, connect it to the DMC-2x00 via the 100-pin high density cable.  The 
ICM-2900 provides screw terminals for access to the connections described in the following 
discussion. 

2x80  
Motion Controllers with more than 4 axes require a second ICM-2900 and 100-pin cable. 

System connection procedures will depend on system components and motor types.  Any combination 
of motor types can be used with the DMC-2x00.  If sinusoidal commutation is to be used, special 
attention must be paid to the reconfiguration of axes. 

Here are the first steps for connecting a motion control system:  

Step A. Connect the motor to the amplifier with no connection to the controller.  Consult the 
amplifier documentation for instructions regarding proper connections.  Connect and turn-on 
the amplifier power supply.  If the amplifiers are operating properly, the motor should stand 
still even when the amplifiers are powered up. 

Step B. Connect the amplifier enable signal.   

 Before making any connections from the amplifier to the controller, you need to verify that 
the ground level of the amplifier is either floating or at the same potential as earth. 

WARNING:  When the amplifier ground is not isolated from the power line or when it has a different 
potential than that of the computer ground, serious damage may result to the computer controller 
and amplifier. 

 If you are not sure about the potential of the ground levels, connect the two ground signals 
(amplifier ground and earth) by a 10 kΩ resistor and measure the voltage across the resistor.  
Only if the voltage is zero, connect the two ground signals directly.   

 The amplifier enable signal is used by the controller to disable the motor.  This signal is 
labeled AMPENA for the A axis on the ICM-2900 and should be connected to the enable 
signal on the amplifier.  Note that many amplifiers designate this signal as the INHIBIT 
signal.  Use the command, MO, to disable the motor amplifiers - check to insure that the 
motor amplifiers have been disabled (often this is indicated by an LED on the amplifier). 

       This signal changes under the following conditions: the watchdog timer activates, the motor-
off command, MO, is given, or the OE1 command (Enable Off-On-Error) is given and the 
position error exceeds the error limit. AMPEN can be used to disable the amplifier for these 
conditions. 

The standard configuration of the AMPEN signal is TTL active high.  In other words, the 
AMPEN signal will be high when the controller expects the amplifier to be enabled.  The 
polarity and the amplitude can be changed if you are using the ICM-2900 interface board.  To 
change the polarity from active high (5 volts = enable, zero volts = disable) to active low 
(zero volts = enable, 5 volts = disable), replace the 7407 IC with a 7406.  Note that many 
amplifiers designate the enable input as ‘inhibit’. 

To change the voltage level of the AMPEN signal, note the state of the resistor pack on the 
ICM-2900.  When Pin 1 is on the 5V mark, the output voltage is 0-5V.  To change to 12 volts, 
pull the resistor pack and rotate it so that Pin 1 is on the 12 volt side.  If you remove the 
resistor pack, the output signal is an open collector, allowing the user to connect an external 
supply with voltages up to 24V. 

Step C. Connect the encoders 



DMC-2X00 Chapter 2  Getting Started   21  

 For stepper motor operation, an encoder is optional. 

 For servo motor operation, if you have a preferred definition of the forward and reverse 
directions, make sure that the encoder wiring is consistent with that definition.    

 The DMC-2x00 accepts single-ended or differential encoder feedback with or without an 
index pulse.  If you are not using the ICM-2900 you will need to consult the appendix for the 
encoder pinouts for connection to the motion controller.  The ICM-2900 accepts encoder 
feedback via individual signal leads.  Simply match the leads from the encoder you are using 
to the encoder feedback inputs on the interconnect board.   The signal leads are labeled CHA 
(channel A), CHB (channel B), and INDEX.  For differential encoders, the complement 
signals are labeled CHA-, CHB-, and INDEX-. 

NOTE: When using pulse and direction encoders, the pulse signal is connected to CHA and the 
direction signal is connected to CHB.  The controller must be configured for pulse and direction 
with the command CE.  See the command summary for further information on the command CE. 

Step D. Verify proper encoder operation. 

 Start with the A encoder first.  Once it is connected, turn the motor shaft and interrogate the 
position with the instruction TPA <return>.  The controller response will vary as the motor is 
turned. 

 At this point, if TPA does not vary with encoder rotation, there are three possibilities: 

1.  The encoder connections are incorrect - check the wiring as necessary. 

2.  The encoder has failed - using an oscilloscope, observe the encoder signals.  Verify 
that both channels A and B have a peak magnitude between 5 and 12 volts.  Note 
that if only one encoder channel fails, the position reporting varies by one count 
only.  If the encoder failed, replace the encoder.  If you cannot observe the encoder 
signals, try a different encoder. 

3.  There is a hardware failure in the controller - connect the same encoder to a different 
axis.  If the problem disappears, you probably have a hardware failure. Consult the 
factory for help. 

Step E. Connect Hall Sensors if available.   

 Hall sensors are only used with sinusoidal commutation and are not necessary for proper 
operation.  The use of Hall sensors allows the controller to automatically estimate the 
commutation phase upon reset and also provides the controller the ability to set a more precise 
commutation phase.  Without Hall sensors, the commutation phase must be determined 
manually. 

 The Hall effect sensors are connected to the digital inputs of the controller.  These inputs can 
be used with the general use inputs (bits 1-8), the auxiliary encoder inputs (bits 81-96), or the 
extended I/O inputs of the DMC-2x00 controller (bits 17-80).   

NOTE: The general use inputs are optoisolated and require a voltage connection at the INCOM 
point - for more information regarding the digital inputs, see Chapter 3, Connecting Hardware. 

 Each set of sensors must use inputs that are in consecutive order.  The input lines are specified 
with the command, BI.  For example, if the Hall sensors of the C axis are connected to inputs 
6, 7 and 8, use the instruction: 

 BI ,, 6  or 

 BIC = 6 



22  • Chapter 2  Getting Started DMC-2X00  

Step 9a. Connect Standard Servo Motors 
The following discussion applies to connecting the DMC-2x00 controller to standard servo motor 
amplifiers: 

The motor and the amplifier may be configured in the torque or the velocity mode.  In the torque 
mode, the amplifier gain should be such that a 10 volt signal generates the maximum required current.  
In the velocity mode, a command signal of 10 volts should run the motor at the maximum required 
speed. 

Step by step directions on servo system setup are also included on the WSDK (Windows Servo Design 
Kit) software offered by Galil.  See section on WSDK for more details. 

Step A. Check the Polarity of the Feedback Loop 

 It is assumed that the motor and amplifier are connected together and that the encoder is 
operating correctly (Step B).  Before connecting the motor amplifiers to the controller, read 
the following discussion on setting Error Limits and Torque Limits.  Note that this discussion 
only uses the A axis as an examples. 

Step B. Set the Error Limit as a Safety Precaution 

 Usually, there is uncertainty about the correct polarity of the feedback.  The wrong polarity 
causes the motor to run away from the starting position.  Using a terminal program, such as 
DMCTERM,  the following parameters can be given to avoid system damage:  

 Input the commands:  

 ER 2000  <CR> Sets error limit on the A axis to be 2000 encoder counts 

 OE 1 <CR> Disables A axis amplifier when excess position error exists  

 If the motor runs away and creates a position error of 2000 counts, the motor amplifier will be 
disabled.   

NOTE: This function requires the AMPEN signal to be connected from the controller to the 
amplifier. 

Step C. Set Torque Limit as a Safety Precaution 

 To limit the maximum voltage signal to your amplifier, the DMC-2x00 controller has a torque 
limit command, TL.  This command sets the maximum voltage output of the controller and 
can be used to avoid excessive torque or speed when initially setting up a servo system.   

 When operating an amplifier in torque mode, the voltage output of the controller will be 
directly related to the torque output of the motor.  The user is responsible for determining this 
relationship using the documentation of the motor and amplifier.  The torque limit can be set 
to a value that will limit the motors output torque.                                                                                             

 When operating an amplifier in velocity or voltage mode, the voltage output of the controller 
will be directly related to the velocity of the motor.  The user is responsible for determining 
this relationship using the documentation of the motor and amplifier.  The torque limit can be 
set to a value that will limit the speed of the motor. 

 For example, the following command will limit the output of the controller to 1 volt on the X 
axis: 

 TL 1 <CR> 

NOTE:  Once the correct polarity of the feedback loop has been determined, the torque limit 
should, in general, be increased to the default value of 9.99.  The servo will not operate properly if 
the torque limit is below the normal operating range.  See description of TL in the command 
reference. 



DMC-2X00 Chapter 2  Getting Started   23  

Step D. Connect the Motor 

Once the parameters have been set, connect the analog motor command signal (ACMD) to the 
amplifier input. 

 To test the polarity of the feedback, command a move with the instruction: 

 PR 1000 <CR> Position relative 1000 counts 

 BGA <CR> Begin motion on A axis 

 When the polarity of the feedback is wrong, the motor will attempt to run away.  The 
controller should disable the motor when the position error exceeds 2000 counts.  If the motor 
runs away, the polarity of the loop must be inverted. 

Inverting the Loop Polarity 
When the polarity of the feedback is incorrect, the user must invert the loop polarity and this may be 
accomplished by several methods.  If you are driving a brush-type DC motor, the simplest way is to 
invert the two motor wires (typically red and black).  For example, switch the M1 and M2 connections 
going from your amplifier to the motor.  When driving a brushless motor, the polarity reversal may be 
done with the encoder.  If you are using a single-ended encoder, interchange the signal CHA and CHB.  
If, on the other hand, you are using a differential encoder, interchange only CHA+ and CHA-.  The 
loop polarity and encoder polarity can also be affected through software with the MT, and CE 
commands.  For more details on the MT command or the CE command, see the Command Reference 
section. 

Sometimes the feedback polarity is correct (the motor does not attempt to run away) but the direction 
of motion is reversed with respect to the commanded motion.  If this is the case, reverse the motor 
leads AND the encoder signals. 

If  the motor moves in the required direction but stops short of the target, it is most likely due to 
insufficient torque output from the motor command signal ACMD.  This can be alleviated by reducing 
system friction on the motors.  The instruction: 

TTA  <return> Tell torque on A 

reports the level of the output signal.  It will show a non-zero value that is below the friction level. 

Once you have established that you have closed the loop with the correct polarity, you can move on to 
the compensation phase (servo system tuning) to adjust the PID filter parameters, KP, KD and KI.  It is 
necessary to accurately tune your servo system to ensure fidelity of position and minimize motion 
oscillation as described in the next section. 

 
 



24  • Chapter 2  Getting Started DMC-2X00  

D
C

 S
ervo M

otor

- +

Encoder

ICM-2900

MOCMDZ

SIGNZ

PWMZ

GND

MOCMDX

SIGNX

PWMX

OUT PWR

ERROR

CMP

OUT GND

OUT5

OUT6

OUT7

OUT8

MOCMDW

SIGNW

PWMW

GND

MOCMDY

SIGNY

PWMY

GND

+5V

HOMEZ

RLSZ

FLSZ

HOMEX

RLSX

FLSX

GND

IN5

IN6

IN7

IN8

+5V

+12V

-12V

ANA GND

ANALOG5

ANALOG6

ANALOG7

ANALOG8

+5V

+5V

+INY

-INY

GND

+5V

+INZ

-INZ

GND

+5V

+INW

-INW

GND

AMPENW

AMPENZ

AMPENY

OUT1

OUT2

OUT3

OUT4

LSCOM

HOMEW

RLSW

FLSW

HOMEY

RLSY

FLSY

GND

XLATCH

YLATCH

ZLATCH

WLATCH

INCOM

ABORT

RESET

GND

ANALOG1

ANALOG2

ANALOG3

ANALOG4

+MAX

+MAY

-MAY

+MBY

-MBY

+MAZ

-MAZ

+MBZ

-MBZ

+MAW

-MAW

+MBW

-MBW

AMPENX

GND

+INX
-INX

GND

+MBX

-MBX

-MAX

Signal Gnd  2

M
S

A
 12-80

Motor -  2
Motor +  1

High Volt    5
Power Gnd  4

+Ref In  4

Inhibit*  11

+ -

C
P

S
 P

ow
er

S
upply

 
Figure 2-6 System Connections with a separate amplifier (MSA 12-80).  This diagram shows the connections for a 
standard DC Servo Motor and encoder   



DMC-2X00 Chapter 2  Getting Started   25  

Step 9b. Connect Sinusoidal Commutation Motors 
When using sinusoidal commutation, the parameters for the commutation must be determined and 

saved in the controller’s non-volatile memory.  The setup for sinusoidal commutation is 
different when using Hall Sensors.  Each step which is affected by Hall Sensor Operation is 
divided into two parts, part 1 and part 2.  After connecting sinusoidal commutation motors, 
the servos must be tuned as described in Step 10. 

Step A. Disable the motor amplifier 

 Use the command, MO, to disable the motor amplifiers.  For example, MOA will turn the A 
axis motor off. 

Step B.  Connect the motor amplifier to the controller. 

 The sinusoidal commutation amplifier requires 2 signals, usually denoted as Phase A & Phase 
B.  These inputs should be connected to the two sinusoidal signals generated by the controller.  
The first signal is the axis specified with the command, BA (Step 6).  The second signal is 
associated with the highest analog command signal available on the controller - note that this 
axis was made unavailable for standard servo operation by the command BA. 

 When more than one axis is configured for sinusoidal commutation, the controller will assign 
the second phase to the command output which has been made available through the axes 
reconfiguration.  The 2nd phase of the highest sinusoidal commutation axis will be the highest 
command output and the 2nd phase of the lowest sinusoidal commutation axis will be the 
lowest command output. 

 It is not necessary to be concerned with cross-wiring the 1st and 2nd signals.  If this wiring is 
incorrect, the setup procedure will alert the user (Step D). 

Example: Sinusoidal Commutation Configuration using a DMC-
2x70 
 BAAC 

 This command causes the controller to be reconfigured as a DMC-2x50 controller.  The A and 
C axes are configured for sinusoidal commutation.  The first phase of the A axis will be the 
motor command A signal.  The second phase of the A axis will be the motor command F 
signal.  The first phase of the C axis will be the motor command C signal.  The second phase 
of the C axis will be the motor command G signal.  

Step C. Specify the Size of the Magnetic Cycle. 

 Use the command, BM, to specify the size of the brushless motors magnetic cycle in encoder 
counts.  For example, if the X axis is a linear motor where the magnetic cycle length is 62 
mm, and the encoder resolution is 1 micron, the cycle equals 62,000 counts.  This can be 
commanded with the command. 

 BM 62000 

 On the other hand, if the C axis is a rotary motor with 4000 counts per revolution and 3 
magnetic cycles per revolution (three pole pairs) the command is 

 BM,, 1333.333 

Step D - part 1 (Systems with or without Hall Sensors).  Test the Polarity of the DACs  

 Use the brushless motor setup command, BS, to test the polarity of the output DACs.  This 
command applies a certain voltage, V, to each phase for some time T, and checks to see if the 
motion is in the correct direction.  



26  • Chapter 2  Getting Started DMC-2X00  

The user must specify the value for V and T.  For example, the command 

 BSA = 2,700 

 will test the A axis with a voltage of 2 volts, applying it for 700 millisecond for each phase.  
In response, this test indicates whether the DAC wiring is correct and will indicate an 
approximate value of BM.  If the wiring is correct, the approximate value for BM will agree 
with the value used in the previous step. 

NOTE: In order to properly conduct the brushless setup, the motor must be allowed to move a 
minimum of one magnetic cycle in both directions. 

NOTE: When using Galil Windows software, the timeout must be set to a minimum of 10 
seconds (time-out = 10000) when executing the BS command.  This allows the software to 
retrieve all messages returned from the controller. 

Step D - part 2 (Systems with Hall Sensors Only).  Test the Hall Sensor Configuration. 

 Since the Hall sensors are connected randomly, it is very likely that they are wired in the 
incorrect order.  The brushless setup command indicates the correct wiring of the Hall 
sensors.  The Hall sensor wires should be re-configured to reflect the results of this test. 

 The setup command also reports the position offset of the Hall transition point and the zero 
phase of the motor commutation.  The zero transition of the Hall sensors typically occur at  
0°, 30° or 90° of the phase commutation.   It is necessary to inform the controller about the 
offset of the Hall sensor and this is done with the instruction, BB.  

Step E.  Save Brushless Motor Configuration 

 It is very important to save the brushless motor configuration in non-volatile memory.  After 
the motor wiring and setup parameters have been properly configured, the burn command, 
BN, should be given. 

NOTE:  Without Hall sensors, the controller will not be able to estimate the commutation phase 
of the brushless motor.  In this case, the controller could become unstable until the commutation 
phase has been set using the BZ command (see next step).  It is highly recommended that the 
motor off command be given before executing the BN command.  In this case, the motor will be 
disabled upon power up or reset and the commutation phase can be set before enabling the motor. 

Step F - part 1 (Systems with or without Hall Sensors).  Set Zero Commutation Phase 

When an axis has been defined as sinusoidally commutated, the controller must have an 
estimate for commutation phase.  When Hall sensors are used, the controller automatically 
estimates this value upon reset of the controller.  If no Hall sensors are used, the controller 
will not be able to make this estimate and the commutation phase must be set before enabling 
the motor.   

To initialize the commutation without Hall effect sensor use the command, BZ.  This function 
drives the motor to a position where the commutation phase is zero, and sets the phase to zero. 

The BZ command is followed by real numbers in the fields corresponding to the driven axes.  
The number represents the voltage to be applied to the amplifier during the initialization.  
When the voltage is specified by a positive number, the initialization process end up in the 
motor off (MO) state.  A negative number causes the process to end in the Servo Here (SH) 
state. 

 



DMC-2X00 Chapter 2  Getting Started   27  

WARNING:  This command must move the motor to find the zero commutation phase.  This 
movement is instantaneous and will cause the system to jerk.  Larger applied voltages will cause 
more severe motor jerk.  The applied voltage will typically be sufficient for proper operation of the 
BZ command.  For systems with significant friction, this voltage may need to be increased and for 
systems with very small motors, this value should be decreased.  For example: 

                                  BZ –2, 0,1 
will drive both A and C axes to zero, will apply 2V and 1V respectively to A and C and will end up 
with A in SH and C in MO. 

Step F - part 2 (Systems with Hall Sensors Only).  Set Zero Commutation Phase 

With Hall sensors, the estimated value of the commutation phase is good to within 30°.  This 
estimate can be used to drive the motor but a more accurate estimate is needed for efficient 
motor operation.  There are 3 possible methods for commutation phase initialization: 

 Method 1.  Use the BZ command as described above. 

 Method 2.  Drive the motor close to commutation phase of zero and then use BZ command.  
This method decreases the amount of system jerk by moving the motor close to zero 
commutation phase before executing the BZ command.  The controller makes an estimate for 
the number of encoder counts between the current position and the position of zero 
commutation phase.  This value is stored in the operand _BZn.  Using this operand the 
controller can be commanded to move the motor.  The BZ command is then issued as 
described above.  For example, to initialize the A axis motor upon power or reset, the 
following commands may be given: 

SHA   ;Enable A axis motor 

PRA=-1*(_BZA)  ;Move A motor close to zero commutation phase 

BGA   ;Begin motion on A axis 

AMA   ;Wait for motion to complete on A axis 

BZA=-1   ;Drive motor to commutation phase zero and leave  

   ;motor on 

 Method 3.  Use the command, BC.  This command uses the Hall transitions to determine the 
commutation phase.  Ideally, the Hall sensor transitions will be separated by exactly 60° and 
any deviation from 60° will affect the accuracy of this method.  If the Hall sensors are 
accurate, this method is recommended.  The BC command monitors the Hall sensors during a 
move and monitors the Hall sensors for a transition point.  When that occurs, the controller 
computes the commutation phase and sets it.  For example, to initialize the A axis motor upon 
power or reset, the following commands may be given: 

SHA   ;Enable A axis motor 

BCA   ;Enable the brushless calibration command 

PRA=50000  ;Command a relative position movement on A axis  

BGA   ;Begin motion on A axis.  When the Hall sensors 

   ; detect a phase transition, the commutation phase is      
   ;re-set. 



28  • Chapter 2  Getting Started DMC-2X00  

 

 Step 9c. Connect Step Motors 
In Stepper Motor operation, the pulse output signal has a 50% duty cycle.  Step motors operate open 
loop and do not require encoder feedback.  When a stepper is used, the auxiliary encoder for the 
corresponding axis is unavailable for an external connection.  If an encoder is used for position 
feedback, connect the encoder to the main encoder input corresponding to that axis.  The commanded 
position of the stepper can be interrogated with RP or TD.  The encoder position can be interrogated 
with TP. 

The frequency of the step motor pulses can be smoothed with the filter parameter, KS.  The KS 
parameter has a range between 0.5 and 8, where 8 implies the largest amount of smoothing.  See 
Command Reference regarding KS. 

The DMC-2x00 profiler commands the step motor amplifier.  All DMC-2x00 motion commands apply 
such as PR, PA, VP, CR and JG.  The acceleration, deceleration, slew speed and smoothing are also 
used.  Since step motors run open-loop, the PID filter does not function and the position error is not 
generated. 

To connect step motors with the DMC-2x00 you must follow this procedure: 

Step A. Install SM jumpers 

 Each axis of the DMC-2x00 that will operate a stepper motor must have the corresponding 
stepper motor jumper installed.  For a discussion of SM jumpers, see section Step 2. Install 
Jumpers on the DMC-2x00. 

Step B. Connect step and direction signals from controller to motor amplifier 

 From the controller to respective signals on your step motor amplifier.  (These signals are 
labeled PULSX and DIRX for the A-axis on the ICM-2900).  Consult the documentation for 
your step motor amplifier. 

Step C. Configure DMC-2x00 for motor type using MT command. You can configure the DMC-
2x00 for active high or active low pulses.  Use the command MT 2 for active low step motor 
pulses and MT -2 for active high step motor pulses.  See description of the MT command in 
the Command Reference. 

Step 10. Tune the Servo System 
Adjusting the tuning parameters required when using servo motors (standard or sinusoidal 
commutation).  The system compensation provides fast and accurate response and the following 
presentation suggests a simple and easy way for compensation.  More advanced design methods are 
available with software design tools from Galil, such as the Servo Design Kit (SDK software) 

The filter has three parameters:  the damping, KD; the proportional gain, KP; and the integrator, KI.  
The parameters should be selected in this order. 

To start, set the integrator to zero with the instruction 

 KI 0  <return> Integrator gain 

and set the proportional gain to a low value, such as 

 KP 1 <return> Proportional gain 

 KD 100 <return> Derivative gain 



DMC-2X00 Chapter 2  Getting Started   29  

For more damping, you can increase KD (maximum is 4095).  Increase gradually and stop after the 
motor vibrates.  A vibration is noticed by audible sound or by interrogation.  If you send the command 

 TE A  <return> Tell error 

a few times, and get varying responses, especially with reversing polarity, it indicates system vibration.  
When this happens, simply reduce KD. 

Next you need to increase the value of KP gradually (maximum allowed is 1023). You can monitor the 
improvement in the response with the Tell Error instruction 

 KP 10 <return> Proportion gain 

 TE A <return> Tell error 

As the proportional gain is increased, the error decreases. 

Again, the system may vibrate if the gain is too high.  In this case, reduce KP.  Typically, KP should 
not be greater than KD/4 (only when the amplifier is configured in the current mode). 

Finally, to select KI, start with zero value and increase it gradually.  The integrator eliminates the 
position error, resulting in improved accuracy. Therefore, the response to the instruction 

 TE A  <return> 

becomes zero.  As KI is increased, its effect is amplified and it may lead to vibrations.  If this occurs, 
simply reduce KI.  Repeat tuning for the B, C and D axes.  

For a more detailed description of the operation of the PID filter and/or servo system theory, see 
Chapter 10 - Theory of Operation. 

Design Examples 
Here are a few examples for tuning and using your controller.  These examples have remarks next to 
each command - these remarks must not be included in the actual program. 

System Set-up 
This example assigns the system filter parameters, error limits and enables the automatic error shut-off. 

Instruction Interpretation 
KP10,10,10,10 Set gains for a,b,c,d (or A,B,C,D axes) 
KP*=10 Alternate method for setting gain on all axes 
KPA=10 Method for setting only A axis gain 
KP, 20 Set B axis gain only 

  
Instruction Interpretation 
OE 1,1,1,1,1,1,1,1 Enable automatic Off on Error function for all axes 
ER*=1000 Set error limit for all axes to 1000 counts 
KP10,10,10,10,10,10,10,10 Set gains for a,b,c,d,e,f,g,and h axes 
KP*=10 Alternate method for setting gain on all axes 
KPA=10 Alternate method for setting A axis gain 
KP,,10 Set C axis gain only 
KPD=10 Alternate method for setting D axis gain 
KPH=10 Alternate method for setting H axis gain 



30  • Chapter 2  Getting Started DMC-2X00  

Profiled Move 
Rotate the A axis a distance of 10,000 counts at a slew speed of 20,000 counts/sec and an acceleration 
and deceleration rates of 100,000 counts/s2.  In this example, the motor turns and stops: 

Instruction Interpretation
PR1000 Distance
SP20000 Speed
DC 100000 Deceleration
AC 100000 Acceleration
BG A Start Motion

Multiple Axes 
Objective: Move the four axes independently.  

Instruction Interpretation 
PR 500,1000,600,-400 Distances of A,B,C,D
SP 10000,12000,20000,10000 Slew speeds of A,B,C,D
AC 10000,10000,10000,10000 Accelerations of A,B,C,D
DC 80000,40000,30000,50000 Decelerations of A,B,C,D
BG AC Start A and C motion
BG BD Start B and D motion

Independent Moves 
The motion parameters may be specified independently as illustrated below. 

Instruction Interpretation
PR ,300,-600 Distances of B and C
SP ,2000 Slew speed of B
DC ,80000 Deceleration of B
AC ,100000 Acceleration of B
AC ,,100000 Acceleration of C
DC,,150000 Deceleration of C
BG C  Start C motion
BG B  Start B motion

Position Interrogation 
The position of the four axes may be interrogated with the instruction, TP. 

Instruction Interpretation
TP Tell position all four axes
TP A Tell position – A axis only
TP B Tell position – B axis only
TP C Tell position – C axis only
TP D Tell position – D axis only

 



DMC-2X00 Chapter 2  Getting Started   31  

The position error, which is the difference between the commanded position and the actual position 
can be interrogated with the instruction TE. 

Instruction Interpretation
TE Tell error – all axes
TE A Tell error – A axis only
TE B Tell error – B axis only
TE C Tell error – C axis only
TE D Tell error – D axis only

Absolute Position 
Objective:  Command motion by specifying the absolute position. 

Instruction Interpretation 
DP 0,2000 Define the current positions of A,B as 0 and 2000 
PA 7000,4000 Sets the desired absolute positions 
BG A Start A motion 
BG B Start B motion 

After both motions are complete, the A and B axes can be command back to zero: 
PA 0,0 Move to 0,0 
BG AB Start both motions 

Velocity Control 
Objective:  Drive the A and B motors at specified speeds. 

Instruction Interpretation 
JG 10000,-20000 Set Jog Speeds and Directions 
AC 100000, 40000 Set accelerations 
DC 50000,50000 Set decelerations 
BG AB Start motion 

after a few seconds, command: 
JG -40000 New A speed and Direction 
TV A Returns A speed 

and then 
JG ,20000 New B speed 
TV B Returns B speed 

These cause velocity changes including direction reversal.  The motion can be stopped with the 
instruction 

ST Stop 

 



32  • Chapter 2  Getting Started DMC-2X00  

 Operation Under Torque Limit 
The magnitude of the motor command may be limited independently by the instruction TL. 

Instruction Interpretation 
TL 0.2 Set output limit of A axis to 0.2 volts 
JG 10000 Set A speed 
BG A Start A motion 

In this example, the A motor will probably not move since the output signal will not be sufficient to 
overcome the friction.  If the motion starts, it can be stopped easily by a touch of a finger. 

Increase the torque level gradually by instructions such as 
Instruction Interpretation 
TL 1.0 Increase torque limit to 1 volt. 
TL 9.998 Increase torque limit to maximum, 9.998 volts. 

The maximum level of 9.998 volts provides the full output torque. 

Interrogation 
The values of the parameters may be interrogated.  Some examples … 

Instruction Interpretation 
KP? Return gain of A axis 
KP ,,? Return gain of C axis. 
KP ?,?,?,? Return gains of all axes. 

Many other parameters such as KI, KD, FA, can also be interrogated.  The command reference denotes 
all commands which can be interrogated.  

Operation in the Buffer Mode 
The instructions may be buffered before execution as shown below. 

Instruction Interpretation 
PR 600000 Distance 
SP 10000 Speed 
WT 10000 Wait 10000 milliseconds before reading the next instruction 
BG A Start the motion 

Using the On-Board Editor 
Motion programs may be edited and stored in the controller’s on-board memory.  When the command, 
ED is given from the Galil DOS terminal (such as DMCTERM), the controllers editor will be started. 

The instruction 
ED Edit mode 

moves the operation to the editor mode where the program may be written and edited.  The editor 
provides the line number.  For example, in response to the first ED command, the first line is zero. 

 

 



DMC-2X00 Chapter 2  Getting Started   33  

 
Line # Instruction Interpretation 
000 #A Define label 
001 PR 700 Distance 
002 SP 2000 Speed 
003 BGA Start A motion 
004 EN End program 

To exit the editor mode, input <cntrl>Q.  The program may be executed with the command. 
XQ #A Start the program running 

If the ED command is issued from the Galil Windows terminal software (such as SmartTERM), the 
software will open a Windows based editor.  From this editor a program can be entered, edited, 
downloaded and uploaded to the controller. 

Motion Programs with Loops 
Motion programs may include conditional jumps as shown below. 

Instruction Interpretation 
#A Label 
DP 0 Define current position as zero 
V1=1000 Set initial value of V1 
#LOOP Label for loop 
PA V1 Move A motor V1 counts 
BG A Start A motion 
AM A After A motion is complete 
WT 500 Wait 500 ms 
TP A Tell position A 
V1=V1+1000 Increase the value of V1 
JP #LOOP,V1<10001 Repeat if V1<10001 
EN End 

After the above program is entered, quit the Editor Mode, <cntrl>Q.  To start the motion, command: 
XQ #A Execute Program #A 

Motion Programs with Trippoints 
The motion programs may include trippoints as shown below. 

Instruction Interpretation 
#B Label 
DP 0,0 Define initial positions 
PR 30000,60000 Set targets 
SP 5000,5000 Set speeds 
BGA Start A motion 
AD 4000 Wait until A moved 4000 
BGB Start B motion 
AP 6000 Wait until position A=6000 
SP 2000,50000 Change speeds 



34  • Chapter 2  Getting Started DMC-2X00  

AP ,50000 Wait until position B=50000 
SP ,10000 Change speed of B 
EN End program 

To start the program, command: 
XQ #B Execute Program #B 

Control Variables 
Objective:  To show how control variables may be utilized.  

Instruction Interpretation 
#A;DP0 Label; Define current position as zero 
PR 4000 Initial position 
SP 2000 Set speed 
BGA Move A 
AMA Wait until move is complete 
WT 500 Wait 500 ms 
#B  
V1 = _TPA Determine distance to zero 
PR -V1/2 Command A move 1/2 the distance 
BGA Start A motion 
AMA After A moved 
WT 500 Wait 500 ms 
V1= Report the value of V1 
JP #C, V1=0 Exit if position=0 
JP #B Repeat otherwise 
#C Label #C 
EN End of Program 

To start the program, command 
XQ #A Execute Program #A 

This program moves A to an initial position of 1000 and returns it to zero on increments of half the 
distance.  Note, _TPA is an internal variable which returns the value of the A position.  Internal 
variables may be created by preceding a DMC-2x00 instruction with an underscore, _. 

Linear Interpolation 
Objective:  Move A,B,C motors distance of 7000,3000,6000, respectively, along linear trajectory.  
Namely, motors start and stop together. 



DMC-2X00 Chapter 2  Getting Started   35  

 
Instruction Interpretation 
LM ABC Specify linear interpolation axes 
LI 7000,3000,6000 Relative distances for linear interpolation 
LE Linear End 
VS 6000 Vector speed 
VA 20000 Vector acceleration 
VD 20000 Vector deceleration 
BGS Start motion 

Circular Interpolation 
Objective:  Move the AB axes in circular mode to form the path shown on Fig. 2-7.  Note that the 
vector motion starts at a local position (0,0) which is defined at the beginning of any vector motion 
sequence.  See application programming for further information. 

Instruction Interpretation 
VM AB Select AB axes for circular interpolation 
VP -4000,0 Linear segment 
CR 2000,270,-180 Circular segment 
VP 0,4000 Linear segment 
CR 2000,90,-180 Circular segment 
VS 1000 Vector speed 
VA 50000 Vector acceleration 
VD 50000 Vector deceleration 
VE End vector sequence 
BGS Start motion 

 

(0,0) local zero 

(0,4000) (-4000,4000) 

(-4000,0) 

A

B 

R=2000 

 
Figure 2-7 Motion Path for Circular Interpolation Example 

 



36  •  Chapter 3 Connecting Hardware DMC-2X00  

 

Chapter 3 Connecting Hardware 

Overview 
The DMC-2x00 provides opto-isolated digital inputs for forward limit, reverse limit, home, and 
abort signals.  The controller also has 8 opto-isolated, uncommitted inputs (for general use) as well 
as 8 TTL outputs and 8 analog inputs configured for voltages between +/- 10 volts.   

2x80  
Controllers with 5 or more axes have an additional 8 opto-isolated inputs and an additional 8 TTL 
outputs. 

This chapter describes the inputs and outputs and their proper connection. 

If you plan to use the auxiliary encoder feature of the DMC-2x00, you will require a separate encoder 
cable and breakout - contact Galil Motion control 

Using Optoisolated Inputs 

Limit Switch Input 
The forward limit switch (FLSx) inhibits motion in the forward direction immediately upon activation 
of the switch.  The reverse limit switch (RLSx) inhibits motion in the reverse direction immediately 
upon activation of the switch.  If a limit switch is activated during motion, the controller will make a 
decelerated stop using the deceleration rate previously set with the DC command.  The motor will 
remain “ON” (in a servo state) after the limit switch has been activated and will hold motor position. 

When a forward or reverse limit switch is activated, the current application program that is running 
will be interrupted and the controller will automatically jump to the #LIMSWI subroutine if one exists.  
This is a subroutine which the user can include in any motion control program and is useful for 
executing specific instructions upon activation of a limit switch.  Automatic Subroutines are discussed 
in Chapter 6. 

After a limit switch has been activated, further motion in the direction of the limit switch will not be 
possible until the logic state of the switch returns back to an inactive state.  This usually involves 
physically opening the tripped switch.  Any attempt at further motion before the logic state has been 
reset will result in the following error: “022 - Begin not possible due to limit switch” error. 

The operands, _LFx and _LRx, contain the state of the forward and reverse limit switches, respectively 
(x represents the axis, A,B,C,D etc.).  The value of the operand is either a ‘0’ or ‘1’ corresponding to 
the logic state of the limit switch.  Using a terminal program, the state of a limit switch can be printed 
to the screen with the command, MG _LFx or MG _LFx.  This prints the value of the limit switch 
operands for the 'x' axis.  The logic state of the limit switches can also be interrogated with the TS 
command.  For more details on TS see the Command Reference. 



DMC-2X00 Chapter 3 Connecting Hardware   37  

Home Switch Input 
 

Homing inputs are designed to provide mechanical reference points for a motion control application.  
A transition in the state of a Home input alerts the controller that a particular reference point has been 
reached by a moving part in the motion control system.  A reference point can be a point in space or an 
encoder index pulse. 

The Home input detects any transition in the state of the switch and toggles between logic states 0 and 
1 at every transition.  A transition in the logic state of the Home input will cause the controller to 
execute a homing routine specified by the user. 

There are three homing routines supported by the DMC-2x00: Find Edge (FE), Find Index (FI), and 
Standard Home (HM). 

The Find Edge routine is initiated by the command sequence: FEA <return>, BGA <return>.  The Find 
Edge routine will cause the motor to accelerate, then slew at constant speed until a transition is 
detected in the logic state of the Home input.  The direction of the FE motion is dependent on the state 
of the home switch.  The motor will then decelerate to a stop.  The acceleration rate, deceleration rate 
and slew speed are specified by the user, prior to the movement, using the commands AC, DC, and SP.  
It is recommended that a high deceleration value be used so the motor will decelerate rapidly after 
sensing the Home switch. 

The Find Index routine is initiated by the command sequence: FIA <return>, BGA <return>.  Find 
Index will cause the motor to accelerate to the user-defined slew speed at a rate specified by the user 
with the AC command and slew until the controller senses a change in the index pulse signal from low 
to high.  The slew speed and direction in which the motor will move is designated by the JG command.  
The motor then decelerates to a stop at the rate previously specified by the user with the DC command.  
Although Find Index is an option for homing, it is not dependent upon a transition in the logic state of 
the Home input, but instead is dependent upon a transition in the level of the index pulse signal. 

The Standard Homing routine is initiated by the sequence of commands HMA <return>, BGA 
<return>.  Standard Homing is a combination of Find Edge and Find Index homing.  Initiating the 
standard homing routine will cause the motor to slew until a transition is detected in the logic state of 
the Home input.  The motor will accelerate at the rate specified by the command, AC, up to the slew 
speed.   After detecting the transition in the logic state on the Home Input, the motor will decelerate to 
a stop at the rate specified by the command, DC.  After the motor has decelerated to a stop, it switches 
direction and approaches the transition point at the speed of 256 counts/sec.  When the logic state 
changes again, the motor moves forward (in the direction of increasing encoder count) at the same 
speed, until the controller senses the index pulse.  After detection, it decelerates to a stop and defines 
this position as 0.  The logic state of the Home input can be interrogated with the command MG 
_HMA.  This command returns a 0 or 1 if the logic state is low or high, respectively.  The state of the 
Home input can also be interrogated indirectly with the TS command. 

For examples and further information about Homing, see command HM, FI, FE of the Command 
Reference and the section entitled ‘Homing’ in the Programming Motion Section of this manual. 

Abort Input 
 

The function of the Abort input is to immediately stop the controller upon transition of the logic state.   

NOTE:   The response of the abort input is significantly different from the response of an activated 
limit switch.  When the abort input is activated, the controller stops generating motion commands 
immediately, whereas the limit switch response causes the controller to make a decelerated stop.   

NOTE:  The effect of an Abort input is dependent on the state of the Off-On-Error function for each 
axis.  If the Off-On-Error function is enabled for any given axis, the motor for that axis will be turned 
off when the abort signal is generated.  This could cause the motor to ‘coast’ to a stop since it is no 



38  •  Chapter 3 Connecting Hardware DMC-2X00  

longer under servo control.  If the Off-On-Error function is disabled, the motor will decelerate to a stop 
as fast as mechanically possible and the motor will remain in a servo state.      

All motion programs that are currently running are terminated when a transition in the Abort input is 
detected.  For information on setting the Off-On-Error function, see the Command Reference, OE. 

Reset Input 
 

When this input is pulled low (to 0 volts), the controller will reset.  This is equivalent to pushing the 
reset button on the front of the DMC-2x00. 

Uncommitted Digital Inputs 
 

The DMC-2x00 has 8 opto-isolated inputs. These inputs can be read individually using the function @ 
IN[x] where x specifies the input number (1 thru 8).  These inputs are uncommitted and can allow the 
user to create conditional statements related to events external to the controller.  For example, the user 
may wish to have the x-axis motor move 1000 counts in the positive direction when the logic state of 
IN1goes high. 

2x80  
Controllers with more than 4 axes have 16 optoisolated inputs which are denoted as Inputs 1 thru 16.  

Wiring the Opto-Isolated Inputs 
 

The Opto-isolation inputs have a bi-directional capability.  To activate an input, at least 1mA of current 
must flow from the input common through the input (see figure 3.1).  This can be accomplished by 2 
methods:   

Method 1: Connect a positive voltage in the range of +5V to +24V (with respect to the input) at the 
input common point.  Each input is connected to ground to activate the input.   

Method 2:  Connect ground to the input common point.  Each input is activated by connecting a 
positive voltage between +5V and +24 volts. 

The Opto-Isolation Common Point 
 

The opto-isolated inputs are configured into 2 groups.  The general inputs, IN[1]-IN[8], and the 
ABORT input are in one group.  The signal, INCOM, is a common connection for all inputs in this 
group.  The limit switches and home switches are in the second group.  The signal, LSCOM, is a 
common connection for all inputs in this group.  Figure 3.1 illustrates the internal circuitry.   

 

Group (Controllers with 1- 4 
Axes) 

Group (Controllers with 5 - 9 
Axes) 

Common 
Signal 

IN[1]-IN[8], ABORT IN[1]-IN[16], ABORT INCOM 

FLA,RLA,HOMEA 
FLB,RLB,HOMEB 
FLC,RLC,HOMEC 
FLD,RLD,HOMED 

FLA,RLA,HOMEA,FLB,RLB,HOMEB 
FLC,RLC,HOMEC,FLD,RLD,HOMED 
FLE,RLE,HOMEE,FLF,RLF,HOMEF 
FLG,RLG,HOMEG,FLH,RLH,HOMEH 

LSCOM 
 



DMC-2X00 Chapter 3 Connecting Hardware   39  

  
 

INCO
M

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 ABOR
T

LSCOM

FLSA RLSA HOMEA FLSB RLSB HOMEB

Additional Limit
Switches(Dependent on

Number of Axes)

(ALATCH) (BLATCH) (CLATCH) (DLATCH)

 
Figure 3-1.  The Optoisolated Inputs.   

NOTE:  Controllers with 5 or axes have IN[9] through IN[16] also connected to INCOM. 

Using an Isolated Power Supply 
To take full advantage of opto-isolation, an isolated power supply should be connected to the input 
common.  When using an isolated power supply, do not connect the ground of the isolated power to the 
ground of the controller.  A power supply in the voltage range between 5 to 24 volts may be applied 
directly (see Figure 3-2).  For voltages greater than 24 volts, a resistor, R, is needed in series with the 
input such that 

 1 mA < V supply/(R + 2.2KΩ) < 11 mA 

 



40  •  Chapter 3 Connecting Hardware DMC-2X00  

 
LSCOM

FLSA

External Resistor Needed for
Voltages > +24V LSCOM

FLSA

External Resistor Needed for 
Voltages > +24V 

Configuration to source current at 
LSCOM terminal and sink 

switch 

Configuration to sink current at 
LSCOM terminal and source 

switch 

2.2K 2.2K

 
Figure 3-2.  Connecting a single Limit or Home Switch to an Isolated Supply.  This diagram only shows the 
connection for the forward limit switch of the X axis. 

NOTE:  As stated in Chapter 2, the wiring is simplified when using a Galil Interconnect module, such 
as the ICM-1900 or ICM-2900.  These boards accept the cables of the DMC-2x00 and provide 
terminals for easy access (Refer to figure 2-2). 

Bypassing the Opto-Isolation: 
 

If no isolation is needed, the internal 5 volt supply may be used to power the switches.  This can be 
done by connecting a jumper between the pins LSCOM or INCOM and 5V, labeled JP3 on the main 
board.  The Galil interconnect modules provide jumpers and the DMC-2x00 also provides a jumper for 
making this connection.  

Analog Inputs 
 

The DMC-2x00 has eight analog inputs configured for the range between -10V and 10V.  The inputs 
are decoded by a 12-bit A/D decoder giving a voltage resolution of approximately .005V.   A 16-bit 
ADC is available as an option.  The impedance of these inputs is 10 KΩ.  The analog inputs are 
specified as AN[x] where x is a number 1 thru 8. 

Amplifier Interface 
 

The DMC-2x00 command voltage ranges between +/-10V.  This signal, along with GND, provides the 
input to the motor amplifiers.  The amplifiers must be sized to drive the motors and load.  For best 
performance, the amplifiers should be configured for a torque (current) mode of operation with no 
additional compensation. The gain should be set such that a 10 volt input results in the maximum 
required current. 

The DMC-2x00 also provides an amplifier enable signal, AMPEN.  This signal changes under the 
following conditions: the motor-off command, MO, is given, the watchdog timer activates, or the OE1 



DMC-2X00 Chapter 3 Connecting Hardware   41  

command (Enable Off-On-Error) is given and the position error exceeds the error limit.  As shown in 
Figure 3-4, AMPEN can be used to disable the amplifier for these conditions. 

The standard configuration of the AMPEN signal is TTL active high.  In other words, the AMPEN 
signal will be high when the controller expects the amplifier to be enabled.  The polarity and the 
amplitude can be changed if you are using the ICM-2900 interface board.  To change the polarity from 
active high (5 volts= enable, zero volts = disable) to active low (zero volts = enable, 5 volts= disable), 
replace the 7407 IC with a 7406.  Note that many amplifiers designate the enable input as ‘inhibit’. 

To change the voltage level of the AMPEN signal, note the state of the resistor pack on the ICM-2900.  
When Pin 1 is on the 5V mark, the output voltage is 0-5V.  To change to 12 volts, pull the resistor pack 
and rotate it so that Pin 1 is on the 12 volt side.  If you remove the resistor pack, the output signal is an 
open collector, allowing the user to connect an external supply with voltages up to 24V. 

 

 

100-PIN
HIGH
DENSITY
CABLE

MOCMDX 

AMPENX 

GND

ICM-2900DMC-2x00

+5V+12V

SERVO MOTOR
AMPLIFIER

Analog Switch

 
Figure 3-3  Connecting AMPEN to the motor amplifier 

TTL Inputs 

 The Auxiliary Encoder Inputs 
The auxiliary encoder inputs can be used for general use.  For each axis, the controller has one 
auxiliary encoder and each auxiliary encoder consists of two inputs, channel A and channel B.  The 
auxiliary encoder inputs are mapped to the inputs 81-96. 

7407 Open Collector Buffer. 
The Enable can be inverted 
by using a 7406.  Accessed 
by removing ICM-2900 
cover. 

Connection to +5V or +12V made resistor 
pack RP1.  Removing the resistor allows 
the user to connect their own resistor the 
desired voltage level (Up to 24V) by 
removing ICM-2900 cover 



42  •  Chapter 3 Connecting Hardware DMC-2X00  

Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels 
between +/- 12 volts.  The inputs have been configured to accept TTL level signals.  To connect TTL 
signals, simply connect the signal to the + input and leave the - input disconnected.   For other signal 
levels, the - input should be connected to a voltage that is ½ of the full voltage range (for example, 
connect the - input to 6 volts if the signal is a 0 - 12 volt logic). 

 

Example: 

A DMC-2x10 has one auxiliary encoder.  This encoder has two inputs (channel A and channel B).  
Channel A input is mapped to input 81 and Channel B input is mapped to input 82.  To use this input 
for 2 TTL signals, the first signal will be connected to AA+ and the second to AB+.   AA- and AB- 
will be left unconnected.  To access this input, use the function @IN[81] and @IN[82]. 

 NOTE: The auxiliary encoder inputs are not available for any axis that is configured for 
stepper motor.   

 

 

 

  

TTL Outputs 
 

The DMC-2x00 provides dedicated and general use outputs. 

General Use Outputs 
 

The DMC-2x00 provides eight general use outputs, an output compare and an error signal output.  The 
general use outputs are TTL and are accessible through the ICM-2900 as OUT1 thru OUT8.  These 
outputs can be turned On and Off with the commands, SB (Set Bit), CB (Clear Bit), OB (Output Bit), 
and OP (Output Port).  For more information about these commands, see the Command Summary.  
The value of the outputs can be checked with the operand _OP and the function @OUT[] (see Chapter 
7, Mathematical Functions and Expressions). 

2x80  
Controllers with 5 or more axes have an additional eight general use TTL outputs. 

NOTE: The ICM-2900 has an option to provide opto-isolation on the outputs.  In this case, the user 
provides an isolated power supply (+5volts to +24volts and ground).  For more information, consult 
Galil. 

Output Compare 
 

The output compare signal is TTL and is available on the ICM-2900 as CMP.  Output compare is 
controlled by the position of any of the main encoders on the controller.  The output can be 
programmed to produce an active low pulse (1usec) based on an incremental encoder value or to 
activate once when an axis position has been passed.  For further information, see the command OC in 
the Command Reference. 



DMC-2X00 Chapter 3 Connecting Hardware   43  

Error Output 
The controller provides a TTL signal, ERROR, to indicate a controller error condition.  When an error 
condition occurs, the ERROR signal will go low and the controller LED will go on.  An error occurs 
because of one of the following conditions: 

1.  At least one axis has a position error greater than the error limit.  The error limit is set by 
using the command ER. 

2.  The reset line on the controller is held low or is being affected by noise. 

3.  There is a failure on the controller and the processor is resetting itself. 

4.  There is a failure with the output IC which drives the error signal. 

Extended I/O of the DMC-2x00 Controller  
The DMC-2x00 controller offers 64 extended TTL I/O points which can be configured as inputs or 
outputs in 8 bit increments.  Configuration is accomplished with command CO - see Chapter 7.  The 
I/O points are accessed through the 80 pin high density connector labeled EXTENDED I/O. 

Interfacing to Grayhill or OPTO-22 G4PB24: 
The DMC-2x00 controller uses one 80 Pin high density connector to access the extended I/O.  This 
connector is accessed via the Galil CABLE-80.  The Galil CABLE-80 can be converted to (2) 50 pin 
ribbon cables which are compatible with I/O mounting racks such as Grayhill 70GRCM32-HL and 
OPTO-22 G4PB24.  To convert the 80 pin cable, use the CB-50-80 adapter from Galil.  The 50 pin 
ribbon cables which connect to the CB-50-80 connect directly into the I/O mounting racks.  The CB-
50-80 adapter board is described in the appendix. 

When using the OPTO-22 G4PB24 I/O mounting rack, the user will only have access to 48 of the 64 
I/O points available on the controller.  Block 5 and Block 9 must be configured as inputs and will be 
grounded by the I/O rack. 

 



44  •  Chapter 4  Communication DMC-2X00  

Chapter 4  Communication 

Introduction 
The DMC-2x00 has two RS232 ports, and either one USB input port and 2 USB output ports, or 
Ethernet ports.  The main RS-232 port is the data set and can be configured through the switches on the 
front panel.  The auxiliary RS-232 port is the data term and can be configured with the software 
command CC.  The auxiliary RS-232 port can be configured either for daisy chain operation (DMC-
2000 only) or as a general port.   This configuration can be saved using the Burn (BN) instruction.  The 
RS232 ports also have a clock synchronizing line that allows synchronization of motion on more than 
one controller. 

RS232 Ports 
The RS232 pin-out description for the main and auxiliary port is given below.  Note that the auxiliary 
port is essentially the same as the main port except inputs and outputs are reversed.  The DMC-2x00 
may also be configured by the factory for RS422.  These pin-outs are also listed below. 

NOTE:  If you are connecting the RS232 auxiliary port to a terminal or any device which is a 
DATASET, it is necessary to use a connector adapter, which changes a dataset to a dataterm.  This 
cable is also known as a 'null' modem cable. 

RS232 - Main Port {P1} DATATERM 
1  CTS – output 6  CTS - output 
2  Transmit Data - output 7  RTS - input 
3  Receive Data - input 8  CTS - output 
4  RTS – input 9  No connect (Can connect to +5V or sample clock) 
5  Ground  

RS232 - Auxiliary Port {P2} DATASET 
1  CTS – input 6  CTS - input 
2  Transmit Data - input 7  RTS - output 
3  Receive Data - output 8  CTS - input 
4  RTS – output 9  5V (Can be connected to sample clock with jumpers) 
5  Ground  



DMC-2X00 Chapter 4  Communication   45  

*RS422 - Main Port {P1} 
1  CTS - output 6  CTS+ output 
2  Transmit Data - output 7  Transmit+ output 
3  Receive Data - input 8  Receive+ input 
4  RTS - input 9  RTS+ input 
5  Ground  

*RS422 - Auxiliary Port {P2} 
1  CTS - input 6  CTS+ input 
2  Receive Data - input 7  Receive+ input 
3  Transmit Data - output 8  Transmit+ output 
4  RTS - output 9  RTS+ output 
5  Ground  

*Default configuration is RS232.  RS422 configuration available from factory. 

RS-232 Configuration 
Configure your PC for 8-bit data, one start-bit, one stop-bit, full duplex and no parity.  The baud rate 
for the RS232 communication can be selected by setting the proper switch configuration on the front 
panel according to the table below. 

Baud Rate Selection 
 

SWITCH SETTINGS  

9600 19.2 3800 BAUD RATE 
ON ON OFF 1200 

ON OFF OFF 9600 

OFF ON OFF 19200 

OFF OFF ON 38400 

OFF ON ON 115200 

Handshaking Modes 
The RS232 main port can be configured for hardware and software handshaking.  For Hardware 
Handshaking, set the HSHK switch to ON.  In this mode, the RTS and CTS lines are used.  The CTS 
line will go high whenever the DMC-2x00 is not ready to receive additional characters.  The RTS line 
will inhibit the DMC-2x00 from sending additional characters.  Note, the RTS line goes high for 
inhibit.  The handshake should be turned on to ensure proper communication especially at higher baud 
rates. 

Software handshaking can be enabled by setting the XON switch to ON.  In this mode, the controller 
will generate / accept XON and XOFF characters to control the flow of characters to / from the 
terminal.  The controller uses the hex value $13 for the XOFF character and the hex value $11 for the 
XON character. 

The auxiliary port of the DMC-2x00 can be configured either as a general port or for the daisy-chain 
(DMC-2000 only).  When configured as a general port, the port can be commanded to send ASCII 
messages to another DMC-2x00 controller or to a display terminal or panel. 



46  •  Chapter 4  Communication DMC-2X00  

(Configure Communication) at port 2.  The command is in the format of: 

 CC m,n,r,p 

where m sets the baud rate, n sets for either handshake or non-handshake mode, r sets for general port 
or the auxiliary port, and p turns echo on or off. 

m - Baud Rate - 300,1200,4800,9600,19200,38400  

n - Handshake - 0=No; 1=Yes  

r - Mode - 0=General Port; 1=Daisy-chain  

p - Echo - 0=Off; 1=On; Valid only if r=0  

Note, for the handshake of the auxiliary port, the roles for the RTS and CTS lines are reversed. 

Example: 

CC 1200,0,0,1  
 

Configure auxiliary communication port for 1200  baud, no handshake, general 
port mode and echo turned on.  

Daisy-Chaining (DMC-2000 only) 
 

Up to eight DMC-2000 controllers may be connected in a daisy-chain allowing for multiple controllers 
to be commanded from a single serial port.  One DMC-2000 is connected to the host terminal via the 
RS232 at port 1 or the main port.  Port 2 or the auxiliary port of that DMC-2000 is then brought into 
port 1 of the next DMC-2000, and so on.  The address of each DMC-2000 is configured by setting the 
three address dipswitches (A0, A1, A2) located on the front of the controller. 

When connecting multiple controllers in a daisy-chain, the cable between controllers should be female 
on both ends with all wires connected straight through. 

ADR1 represents the 20 bit, ADR2 represents 21 bit, and ADR4 represents 22 bit of the address.  The 
eight possible addresses, 0 through 7, are set as follows: 

 

A2  A1  A0  ADDRESS  
OFF OFF OFF 0 

OFF OFF ON 1 

OFF ON OFF 2 

OFF ON ON 3 

ON OFF OFF 4 

ON OFF ON 5 

ON ON OFF 6 

ON ON ON 7 

To communicate with any one of the DMC-2000 units, give the command “%A”, where A is the 
address of the board.  All instructions following this command will be sent only to the board with that 
address.  Only when a new %A command is given will the instruction be sent to another board.  The 
only exception is "!" command.  To talk to all the DMC-2000 boards in the daisy-chain at one time, 
insert the character "!" before the software command.  All boards receive the command, but only 
address 0 will echo. 

NOTE:  The CC command must be specified to configure the port P2 of each unit. 



DMC-2X00 Chapter 4  Communication   47  

Example- Daisy Chain   
 

Objective: Control a 7-axis motion system using two controllers, a DMC-2040 4 axis controller and a 
DMC-2030 3 axis controller.  Address 0 is the DMC-2040 and address 1 is the DMC-2030. 

 

Desired motion profile: 
Address 0 (DMC-2040) A Axis is 500 counts  

B Axis is 1000 counts  
C Axis is 2000 counts  
D Axis is 1500 counts 

Address 1 (DMC-2030) A Axis is 700 counts  
B Axis is 1500 counts  
C Axis is 2500 counts 

 

Command  Interpretation  
%0 Talk only to controller 0 (DMC-2040)  
PR 500,1000,2000,1500 Specify A,B,C,D distances 
%1 Talk only to controller board 1 (DMC-2030) 
PR 700,1500,2500 Specify A,B,C distances 
!BG Begin motion on both controllers 

Synchronizing Sample Clocks in Daisy Chain 
 

It is possible to synchronize the sample clocks of all DMC-2000's in the daisy-chain.  The first 
controller (connected to the computer) should have a jumper placed on the jumper JP3 to connect the 
pins labeled S and 8.  Note that this connection requires a jumper to be placed sideways.  The 
subsequent controllers should have jumpers placed on the jumper JP3, JP4 to connect the pins labeled 
S and 8 on both jumpers.  Note that these connections require the jumpers to be placed sideways. 

Ethernet Configuration (DMC-2100/2200 only) 
 

Communication Protocols 
 

The Ethernet is a local area network through which information is transferred in units known as 
packets.  Communication protocols are necessary to dictate how these packets are sent and received.  
The DMC-2100 supports two industry standard protocols, TCP/IP and UDP/IP.  The controller will 
automatically respond in the format in which it is contacted. 

TCP/IP is a "connection" protocol.  The master must be connected to the slave in order to begin 
communicating.  Each packet sent is acknowledged when received.  If no acknowledgement is 
received, the information is assumed lost and is resent. 

Unlike TCP/IP, UDP/IP does not require a "connection".  This protocol is similar to communicating 
via RS232.  If information is lost, the controller does not return a colon or question mark.   Because the 
protocol does not provide for lost information, the sender must re-send the packet. 



48  •  Chapter 4  Communication DMC-2X00  

Although UDP/IP is more efficient and simple, Galil recommends using the TCP/IP protocol.  TCP/IP 
insures that if a packet is lost or destroyed while in transit, it will be resent. 

Ethernet communication transfers information in ‘packets’.  The packets must be limited to 470 data 
bytes or less.  Larger packets could cause the controller to lose communication. 

NOTE:  In order not to lose information in transit, Galil recommends that the user wait for an 
acknowledgement of receipt of a packet before sending the next packet. 

Addressing 
 

There are three levels of addresses that define Ethernet devices.  The first is the Ethernet or hardware 
address.  This is a unique and permanent 6 byte number.  No other device will have the same Ethernet 
address.  The DMC-2100/2200 Ethernet address is set by the factory and the last two bytes of the 
address are the serial number of the controller. 

The second level of addressing is the IP address.  This is a 32-bit (or 4 byte) number.  The IP address is 
constrained by each local network and must be assigned locally.  Assigning an IP address to the 
controller can be done in a number of ways. 

The first method is to use the BOOT-P utility via the Ethernet connection (the DMC-2100/2200 must 
be connected to network and powered).  For a brief explanation of BOOT-P, see the section: Third 
Party Software.  Either a BOOT-P server on the internal network or the Galil terminal software may be 
used.  To use the Galil BOOT-P utility, select the registry in the terminal emulator.  Select the DMC-
2100/2200 and then the Ethernet Parameters tab.  Enter the IP address at the prompt and select either 
TCP/IP or UDP/IP as the protocol.  When done, click on the ASSIGN IP ADDRESS.  The Galil 
Terminal Software will respond with a list of all controllers on the network that do not currently have 
IP addresses.  The user selects the controller and the software will assign the controller the specified IP 
address.  Then enter the terminal and type in BN to save the IP address to the controller's non-volatile 
memory. 

 

CAUTION:  Be sure that there is only one BOOT-P server running.  If your network has DHCP or 
BOOT-P running, it may automatically assign an IP address to the controller upon linking it to the 
network.  In order to ensure that the IP address is correct, please contact your system administrator 
before connecting the controller to the Ethernet network. 

 
 

 

 

 

 

 

 

 

 

 

 

 



DMC-2X00 Chapter 4  Communication   49  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The second method for setting an IP address is to send the IA command through the DMC-2100/2200 
main RS-232 port.  The IP address you want to assign may be entered as a 4 byte number delimited by 
commas (industry standard uses periods) or a signed 32 bit number (Ex.  IA 124,51,29,31 or IA 
2083724575).  Type in BN to save the IP address to the controller's non-volatile memory. 

NOTE:  Galil strongly recommends that the IP address selected is not one that can be accessed across 
the Gateway.  The Gateway is an application that controls communication between an internal network 
and the outside world. 

The third level of Ethernet addressing is the UDP or TCP port number.  The Galil controller does not 
require a specific port number.  The port number is established by the client or master each time it 
connects to the controller. 

Communicating with Multiple Devices 
 

The DMC-2100/2200 is capable of supporting multiple masters and slaves.  The masters may be 
multiple PC's that send commands to the controller.  The slaves are typically peripheral I/O devices 
that receive commands from the controller. 

NOTE:  The term "Master" is equivalent to the internet "client".  The term "Slave" is equivalent to the 
internet "server". 

An Ethernet handle is a communication resource within a device.  The DMC-2100/2200 can have a 
maximum of 6 Ethernet handles open at any time.  When using TCP/IP, each master or slave uses an 
individual Ethernet handle.  In UDP/IP, one handle may be used for all the masters, but each slave uses 



50  •  Chapter 4  Communication DMC-2X00  

one.  (Pings and ARPs do not occupy handles.)  If all 6 handles are in use and a 7th master tries to 
connect, it will be sent a "reset packet" that generates the appropriate error in its windows application. 

NOTE:  There are a number of ways to reset the controller.  Hardware reset (push reset button or 
power down controller) and software resets (through Ethernet or RS232 by entering RS).  The only 
reset that will not cause the controller to disconnect is a software reset via the Ethernet. 

When the Galil controller acts as the master, the IH command is used to assign handles and connect to 
its slaves.  The IP address may be entered as a 4 byte number separated with commas (industry 
standard uses periods) or as a signed 32 bit number.  A port number may also be specified, but if it is 
not, it will default to 1000.  The protocol (TCP/IP or UDP/IP) to use must also be designated at this 
time.  Otherwise, the controller will not connect to the slave.  (Ex.  IHB=151,25,255,9<179>2  This 
will open handle #2 and connect to the IP address 151.25.255.9, port 179, using TCP/IP) 

An additional protocol layer is available for speaking to I/O devices.  Modbus is an RS-485 protocol 
that packages information in binary packets that are sent as part of a TCP/IP packet.  In this protocol, 
each slave has a 1 byte slave address.  The DMC-2100/2200 can use a specific slave address or default 
to the handle number.  The port number for Modbus is 502. 

The Modbus protocol has a set of commands called function codes.  The DMC-2100/2200 supports the 
10 major function codes: 

 
Function Code Definition 

01 Read Coil Status (Read Bits) 

02 Read Input Status (Read Bits) 

03 Read Holding Registers (Read Words) 

04 Read Input Registers (Read Words) 

05 Force Single Coil (Write One Bit) 

06 Preset Single Register (Write One Word) 

07 Read Exception Status (Read Error Code) 

15 Force Multiple Coils (Write Multiple Bits) 

16 Preset Multiple Registers (Write Words) 

17 Report Slave ID 
 

The DMC-2100/2200 provides three levels of Modbus communication.  The first level allows the user 
to create a raw packet and receive raw data.  It uses the MBh command with a function code of –1.  
The format of the command is  

MBh = -1,len,array[] where  len is the number of bytes 

     array[] is the array with the data 

The second level incorporates the Modbus structure.  This is necessary for sending configuration and 
special commands to an I/O device.  The formats vary depending on the function code that is called.  
For more information refer to the Command Reference. 

The third level of Modbus communication uses standard Galil commands.  Once the slave has been 
configured, the commands that may be used are @IN[], @AN[], SB, CB, OB, and AO.  For example, 
AO 2020,8.2 would tell I/O number 2020 to output 8.2 volts. 
If a specific slave address is not necessary, the I/O number to be used can be calculated with the 
following: 



DMC-2X00 Chapter 4  Communication   51  

 I/O Number = (HandleNum*1000) + ((Module-1)*4) + (BitNum-1) 
Where HandleNum is the handle number from 1 (A) to 6 (F).  Module is the position of the module in 
the rack from 1 to 16.  BitNum is the I/O point in the module from 1 to 4. 

If an explicit slave address is to be used, the equation becomes: 

I/O Number = (SlaveAddress*10000) + (HandleNum*1000) +((Module-1)*4) + (Bitnum-1) 

To view an example procedure for communicating with an OPTO-22 rack, refer to the appendix.  

Which devices receive what information from the controller depends on a number of things.  If a 
device queries the controller, it will receive the response unless it explicitly tells the controller to send 
it to another device.  If the command that generates a response is part of a downloaded program, the 
response will route to whichever port is specified as the default (unless explicitly told to go to another 
port) with the ENET switch ("ON" designates Ethernet in which case it goes to the last handle to 
communicate with the controller, "OFF" designates main RS232).  To designate a specific destination 
for the information, add {Eh} to the end of the command.  (Ex.  MG{EC}"Hello" will send the 
message "Hello" to handle #3.  TP,,?{EF} will send the z axis position to handle #6.) 

Multicasting 
 

A multicast may only be used in UDP/IP and is similar to a broadcast (where everyone on the network 
gets the information) but specific to a group.  In other words, all devices within a specified group will 
receive the information that is sent in a multicast.  There can be many multicast groups on a network 
and are differentiated by their multicast IP address.  To communicate with all the devices in a specific 
multicast group, the information can be sent to the multicast IP address rather than to each individual 
device IP address.  All Galil controllers belong to a default multicast address of 239.255.19.56.  The 
controller's multicast IP address can be changed by using the IA> u command. 

Using Third Party Software 
 

Galil supports ARP, BOOT-P, and Ping which are utilities for establishing Ethernet connections.  ARP 
is an application that determines the Ethernet (hardware) address of a device at a specific IP address.  
BOOT-P is an application that determines which devices on the network do not have an IP address and 
assigns the IP address you have chosen to it.  Ping is used to check the communication between the 
device at a specific IP address and the host computer. 
The DMC-2100 can communicate with a host computer through any application that can send TCP/IP 
or UDP/IP packets.  A good example of this is Telnet, a utility that comes with most Windows 
systems. 

Data Record 

 
The DMC-2x00 can provide a block of status information with the use of a single command, QR.  This 
command, along with the QZ command can be very useful for accessing complete controller status.  
The QR command will return 4 bytes of header information and specific blocks of information as 
specified by the command arguments:   

QR ABCDEFGHST 



52  •  Chapter 4  Communication DMC-2X00  

Each argument corresponds to a block of information according to the Data Record Map below.  If no 
argument is given, the entire data record map will be returned.  Note that the data record size will 
depend on the number of axes. 

Data Record Map 
DATA TYPE ITEM BLOCK 
UB 1st byte of header Header 
UB 2nd byte of header Header 
UB 3rd byte of header Header 
UB 4rth byte of header Header 
UW sample number I block   
UB general input 0 I block   
UB general input 1 I block   
UB general input 2 I block   
UB general input 3 I block   
UB general input 4 I block   
UB general input 5 I block   
UB general input 6 I block   
UB general input 7 I block   
UB general input 8 I block   
UB general input 9 I block   
UB general output 0 I block   
UB general output 1 I block   
UB general output 2 I block   
UB general output 3 I block   
UB general output 4 I block   
UB general output 5 I block   
UB general output 6 I block   
UB general output 7 I block   
UB general output 8 I block   
UB general output 9 I block   
UB error code I block   
UB general status I block   
UW segment count of coordinated move for S plane S block 
UW coordinated move status for S plane S block 
SL distance traveled in coordinated move for S plane S block 
UW segment count of coordinated move for T plane T block 
UW coordinated move status for T plane T block 
SL distance traveled in coordinated move for T plane T block 
UW a axis status A block 
UB a axis switches A block 
UB a axis stop code A block 
SL a axis reference position A block 
SL a axis motor position A block 
SL a axis position error A block 



DMC-2X00 Chapter 4  Communication   53  

SL a axis auxiliary position A block 
SL a axis velocity A block 
SW a axis torque A block 
SW a axis analog A block 
UW b axis status B block 
UB b axis switches B block 
UB b axis stop code B block 
SL b axis reference position B block 
SL b axis motor position B block 
SL b axis position error B block 
SL b axis auxiliary position B block 
SL b axis velocity B block 
SW b axis torque B block 
SW b axis analog B block 
UW c axis status C block 
UB c axis switches C block 
UB c axis stop code C block 
SL c axis reference position C block 
SL c axis motor position C block 
SL c axis position error C block 
SL c axis auxiliary position C block 
SL c axis velocity C block 
SW c axis torque C block 
SW c axis analog C block 
UW d axis status D block 
UB d axis switches D block 
UB d axis stop code D block 
SL d axis reference position D block 
SL d axis motor position D block 
SL d axis position error D block 
SL d axis auxiliary position D block 
SL d axis velocity D block 
SW d axis torque D block 
SW d axis analog D block 
UW e axis status E block 
UB e axis switches E block 
UB e axis stop code E block 
SL e axis reference position E block 
SL e axis motor position E block 
SL e axis position error E block 
SL e axis auxiliary position E block 
SL e axis velocity E block 
SW e axis torque E block 
SW e axis analog E block 
UW f axis status F block 



54  •  Chapter 4  Communication DMC-2X00  

UB f axis switches F block 
UB f axis stop code F block 
SL f axis reference position F block 
SL f axis motor position F block 
SL f axis position error F block 
SL f axis auxiliary position F block 
SL f axis velocity F block 
SW f axis torque F block 
SW f axis analog F block 
UW g axis status G block 
UB g axis switches G block 
UB g axis stop code G block 
SL g axis reference position G block 
SL g axis motor position G block 
SL g axis position error G block 
SL g axis auxiliary position G block 
SL g axis velocity G block 
SW g axis torque G block 
SW g axis analog G block 
UW h axis status H block 
UB h axis switches H block 
UB h axis stop code H block 
SL h axis reference position H block 
SL h axis motor position H block 
SL h axis position error H block 
SL h axis auxiliary position H block 
SL h axis velocity H block 
SW h axis torque H block 
SW h axis analog H block 

NOTE: UB = Unsigned Byte, UW = Unsigned Word,  SW = Signed Word,  SL = Signed Long Word 

Explanation of Status Information and Axis Switch 
Information 
Header Information - Byte 0, 1 of Header: 

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8 

1 N/A N/A N/A N/A I Block 
Present 
in Data 
Record 

T Block 
Present 
in Data 
Record 

S Block 
Present 
in Data 
Record 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

H Block 
Present 
in Data 
Record 

G Block 
Present 
in Data 
Record 

F Block 
Present 
in Data 
Record 

E Block 
Present 
in Data 
Record 

D Block 
Present 
in Data 
Record 

C Block 
Present 
in Data 
Record 

B Block 
Present 
in Data 
Record 

A Block 
Present 
in Data 
Record 



DMC-2X00 Chapter 4  Communication   55  

Bytes 2, 3 of Header: 
 

Bytes 2 and 3 make a word which represents the Number of bytes in the data record, including the 
header. 

Byte 2 is the low byte and byte 3 is the high byte 
 

NOTE: The header information of the data records is formatted in little endian.   

 

General Status Information (1 Byte) 
 

BIT 7 BIT 
6 

BIT 
5 

BIT 
4 

BIT 
3 

BIT 2 BIT 1 BIT 0 

Program 
Running 

N/A N/A N/A N/A Waiting for 
input from IN 
command 

Trace On Echo On 

Axis Switch Information (1 Byte) 
 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

Latch 
Occurred 

State of 
Latch 
Input 

N/A N/A State of 
Forward 
Limit 

State of 
Reverse 
Limit 

State of 
Home 
Input 

SM 
Jumper 
Installed 

Axis Status Information (2 Byte) 
 

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8 

Move in 
Progress 

Mode of 
Motion 

PA or 
PR 

Mode of 
Motion 

PA only 

(FE) 
Find 
Edge in 
Progress 

Home 
(HM) in 
Progress 

1st Phase 
of HM 
complete 

2nd Phase 
of HM 
complete 
or FI 
command 
issued 

Mode of 
Motion  

Coord. 
Motion 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

Negative 
Direction 
Move 

Mode of 
Motion 

Contour 

Motion 
is 
slewing 

Motion is 
stopping 
due to ST 
or Limit 
Switch 

Motion is 
making 
final 
decel. 

Latch is 
armed 

Off-On-
Error 
occurred 

Motor 
Off 



56  •  Chapter 4  Communication DMC-2X00  

 

Coordinated Motion Status Information for S or T plane (2 Byte) 
BIT 15 BIT 

14 
BIT 13 BIT 12 BIT 11 BIT 

10 
BIT 9 BIT 8 

Move in 
Progress 

N/A N/A N/A N/A N/A N/A N/A 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

N/A N/A Motion is 
slewing 

Motion is 
stopping due 
to ST or 
Limit 
Switch 

Motion is 
making 
final 
decel. 

N/A N/A N/A 

Notes Regarding Velocity and Torque Information 
 

The velocity information that is returned in the data record is 64 times larger than the value returned 
when using the command TV (Tell Velocity).  See command reference for more information about 
TV. 

The Torque information is represented as a number in the range of +/-32767.  Maximum negative 
torque is -32767.  Maximum positive torque is 32767.  Zero torque is 0. 

QZ Command 
 

The QZ command can be very useful when using the QR command, since it provides information 
about the controller and the data record.  The QZ command returns the following 4 bytes of 
information. 

BYTE #  INFORMATION 
0 Number of axes present 

1 number of bytes in general block of data record 

2 number of bytes in coordinate plane block of data record 

3 Number of Bytes in each axis block of data record 

Controller Response to Commands 
 

Most DMC-2x00 instructions are represented by two characters followed by the appropriate 
parameters.  Each instruction must be terminated by a carriage return or semicolon. 

Instructions are sent in ASCII, and the DMC-2x00 decodes each ASCII character (one byte) one at a 
time.  It takes approximately 0.5 msec for the controller to decode each command.  However, the PC 
can send data to the controller at a much faster rate because of the FIFO buffer. 

After the instruction is decoded, the DMC-2x00 returns a response to the port from which the 
command was generated.  If the instruction was valid, the controller returns a colon (:) or a question 
mark (?) if the instruction was not valid.  For example, the controller will respond to commands which 
are sent via the USB port back through the USB port, to commands which are sent via the main RS-



DMC-2X00 Chapter 4  Communication   57  

232 port back through the RS-232 port, and to commands which are sent via the Ethernet port back 
through the Ethernet port. 

For instructions that return data, such as Tell Position (TP), the DMC-2x00 will return the data 
followed by a carriage return, line feed and : . 

It is good practice to check for : after each command is sent to prevent errors.  An echo function is 
provided to enable associating the DMC-2x00 response with the data sent.  The echo is enabled by 
sending the command EO 1 to the controller.  

Unsolicited Messages Generated by Controller 
 

When the controller is executing a program, it may generate responses which will be sent via the USB 
port (DMC-2000), main RS-232 port, or Ethernet ports (DMC-2100/2200).  This response could be 
generated as a result of messages using the MG or IN command OR as a result of a command error.  
These responses are known as unsolicited messages since they are not generated as the direct response 
to a command. 

Messages can be directed to a specific port using the specific Port arguments - see MG and IN 
commands described in the Command Reference.  If the port is not explicitly given, unsolicited 
messages will be sent to the default port. The default port is determined by the state of the 
USB/Ethernet dip switch when the system is reset. 

The controller has a special command, CW, which can affect the format of unsolicited messages.  This 
command is used by Galil Software to differentiate response from the command line and unsolicited 
messages.  The command, CW1 causes the controller to set the high bit of ASCII characters to 1 of all 
unsolicited characters.  This may cause characters to appear garbled to some terminals.  This function 
can be disabled by issuing the command, CW2.  For more information, see the CW command in the 
Command Reference. 

When handshaking is used (hardware and/or software handshaking) characters which are generated by 
the controller are placed in a FIFO buffer before they are sent out of the controller.  This size of the 
USB buffer is 64 bytes and the size of the RS-232 buffer is 128 bytes.   When this buffer becomes full, 
the controller must either stop executing commands or ignore additional characters generated for 
output.  The command CW,1 causes the controller to ignore all output from the controller while the 
FIFO is full.  The command, CW ,0 causes the controller to stop executing new commands until more 
room is made available in the FIFO.  This command can be very useful when hardware handshaking is 
being used and the communication line between controller and terminal will be disconnected.  In this 
case, characters will continue to build up in the controller until the FIFO is full.  For more information, 
see the CW command in the Command Reference. 

Galil Software Tools and Libraries 
 

API (Application Programming Interface) software is available from Galil.  The API software is 
written in C and is included in the Galil CD-ROM.  They can be used for development under  
Windows environments.  With the API's, the user can incorporate already existing library functions 
directly into a C program. 

Galil has also developed a Visual Basic Toolkit.  This provides 32-bit OCXs for handling all of the 
DMC-2x00 communications including support of interrupts.  These objects install directly into Visual 
Basic and are part of the run-time environment.    

Galil also has an Active-X Tool Kit to allow developers to rapidly develop their own user applications.  
For more information, contact Galil. 



58  •  Chapter 4  Communication DMC-2X00  

THIS PAGE LEFT BLANK INTENTIALLY  



DMC-2X00 Chapter 5  Command Basics   59  

Chapter 5  Command Basics 

Introduction 
The DMC-2x00 provides over 100 commands for specifying motion and machine parameters.  
Commands are included to initiate action, interrogate status and configure the digital filter.  These 
commands can be sent in ASCII or binary. 

In ASCII, the DMC-2x00 instruction set is BASIC-like and easy to use.  Instructions consist of two 
uppercase letters that correspond phonetically with the appropriate function.  For example, the 
instruction BG begins motion, and ST stops the motion.  In binary, commands are represented by a 
binary code ranging from 80 to FF. 

ASCII commands can be sent "live" over the bus for immediate execution by the DMC-2x00, or an 
entire group of commands can be downloaded into the DMC-2x00 memory for execution at a later 
time.  Combining commands into groups for later execution is referred to as Applications 
Programming and is discussed in the following chapter.  Binary commands cannot be used in 
Applications programming. 

This section describes the DMC-2x00 instruction set and syntax.  A summary of commands as well as 
a complete listing of all DMC-2x00 instructions is included in the Command Reference chapter. 

Command Syntax - ASCII 
DMC-2x00 instructions are represented by two ASCII upper case characters followed by applicable 
arguments.  A space may be inserted between the instruction and arguments.  A semicolon or <return> 
is used to terminate the instruction for processing by the DMC-2x00 command interpreter.   

NOTE:  If you are using a Galil terminal program, commands will not be processed until an <return> 
command is given.  This allows the user to separate many commands on a single line and not begin 
execution until the user gives the <return> command. 

IMPORTANT:  All DMC-2x00 commands are sent in upper case. 

 For example, the command 

 PR 4000 <return>  Position relative 

PR is the two character instruction for position relative.  4000 is the argument which represents the 
required position value in counts.  The <return> terminates the instruction.  The space between PR and 
4000 is optional. 

For specifying data for the A,B,C and D axes, commas are used to separate the axes.  If no data is 
specified for an axis, a comma is still needed as shown in the examples below.  If no data is specified 
for an axis, the previous value is maintained.   



60  •  Chapter 5  Command Basics DMC-2X00  

To view the current values for each command, type the command followed by a ? for each axis 
requested. 

PR 1000 Specify A only as 1000 
PR ,2000 Specify B only as 2000 
PR ,,3000 Specify C only as 3000 
PR ,,,4000 Specify D only as 4000 
PR 2000, 4000,6000, 8000 Specify A,B,C and D 
PR ,8000,,9000 Specify B and D only 
PR ?,?,?,? Request A,B,C,D values 
PR ,? Request B value only 

The DMC-2x00 provides an alternative method for specifying data.  Here data is specified individually 
using a single axis specifier such as A, B, C or D.  An equals sign is used to assign data to that axis.  
For example: 

PRA=1000 Specify a position relative movement for the A axis of 1000 
ACB=200000 Specify acceleration for the B axis as 200000 

Instead of data, some commands request action to occur on an axis or group of axes.  For example, ST 
AB stops motion on both the A and B axes.  Commas are not required in this case since the particular 
axis is specified by the appropriate letter A, B, C or D.  If no parameters follow the instruction, action 
will take place on all axes.    Here are some examples of syntax for requesting action: 

BG A Begin A only 
BG B Begin B only 
BG ABCD Begin all axes 
BG BD Begin B and D only 
BG Begin all axes 

 

2x80  
For controllers with 5 or more axes, the axes are referred to as A,B,C,D,E,F,G,H.   

 
BG ABCDEFGH Begin all axes 
BG D Begin D only 

Coordinated Motion with more than 1 axis 
When requesting action for coordinated motion, the letter S and T are used to specify coordinated 
motion planes.  For example: 

 
BG S Begin coordinated sequence, S 
BG TW Begin coordinated sequence, T, and D axis 

 



DMC-2X00 Chapter 5  Command Basics   61  

Command Syntax - Binary 
 

Some commands have an equivalent binary value. Binary communication mode can be executed much 
faster than ASCII commands.  Binary format can only be used when commands are sent from the PC 
and cannot be embedded in an application program. 

Binary Command Format 
All binary commands have a 4 byte header and is followed by data fields.  The 4 bytes are specified in 
hexadecimal format. 

 Header Format: 

Byte 1 
Specifies the command number between 80 to FF.  The complete binary command number table is 
listed below. 

Byte 2  
Specifies the # of bytes in each field as 0,1,2,4 or 6 as follows: 

00 No datafields (i.e. SH or BG) 

01 One byte per field 

02 One word (2 bytes per field) 

04 One long word (4 bytes) per field 

06 Galil real format (4 bytes integer and 2 bytes fraction) 

Byte 3  
Specifies whether the command applies to a coordinated move as follows: 

00 No coordinated motion movement 

01 Coordinated motion movement 

For example, the command STS designates motion to stop on a vector motion.  The third byte for the 
equivalent binary command would be 01. 

Byte 4  
Specifies the axis # or data field as follows 

Bit 7 = H axis or 8th data field 

Bit 6 = G axis or 7th data field 

Bit 5 = F axis or 6th data field 

Bit 4 = E axis or 5th data field 

Bit 3 = D axis or 4th  data field 

Bit 2 = C axis or 3rd  data field 



62  •  Chapter 5  Command Basics DMC-2X00  

Bit 1 = B axis or 2nd  data field 

Bit 0 = A axis or 1st  data field 

Datafields Format 
Datafields must be consistent with the format byte and the axes byte.  For example, the command PR 
1000,, -500 would be  

 A7 02 00 05 03 E8 FE 0C 

where  A7 is the command number for PR 

 02 specifies 2 bytes for each data field 

 00 S is not active for PR 

 05 specifies bit 0 is active for A axis and bit 2 is active for C axis  (20 + 22=5)  

 03 E8 represents 1000 

 FE OE represents -500 

Example 
The command ST ABCS would be  

     A1 00 01 07 

where  A1 is the command number for ST 

 00 specifies 0 data fields 

 01 specifies stop the coordinated axes S 

 07 specifies stop X (bit 0), Y (bit 1) and Z (bit 2)  20+21+23 =7 

Binary Command Table 
COMMAND NO. COMMAND NO. COMMAND No. 

reserved 80 reserved ab reserved d6 

KP 81 reserved ac reserved d7 

KI 82 reserved ad RP d8 

KD 83 reserved ae TP d9 

DV 84 reserved af TE da 

AF 85      LM b0 TD db 

KF 86 LI b1 TV dc 

PL 87 VP b2 RL dd 

ER 88 CR a3 TT de 

IL 89 TN b4 TS df 

TL 8a LE, VE b5 TI e0 

MT 8b VT b6 SC e1 

CE 8c VA b7 reserved e2 

OE 8d VD b8       reserved e3 

FL 8e VS b9 reserved e4 

BL 8f VR ba TM e5 



DMC-2X00 Chapter 5  Command Basics   63  

AC 90      reserved bb CN e6 

DC 91 reserved bc LZ e7 

SP 92 CM bd OP e8 

IT 93 CD be OB e9 

FA 94 DT bf SB ea 

FV 95 ET c0 CB eb 

GR 96 EM c1 II ec 

DP 97 EP c2 EI ed 

DE 98      EG c3 AL ee 

OF 99 EB c4 reserved ef 

GM 9a EQ c5 reserved f0 

reserved 9b EC c6 reserved f1 

reserved 9c reserved c7 reserved f2 

reserved 9d AM c8      reserved f3 

reserved 9e MC c9 reserved f4 

reserved 9f TW ca reserved f5 

BG a0      MF cb reserved f6 

ST a1 MR cc reserved f7 

AB a2 AD cd reserved f8 

HM a3 AP ce reserved f9 

FE a4 AR cf reserved fa 

FI a5 AS d0 reserved fb 

PA a6 AI d1 reserved fc 

PR a7 AT d2 reserved fd 

JG a8      WT d3 reserved fe 

MO a9 WC d4 reserved ff 

SH aa reserved d5   

Controller Response to DATA 
The DMC-2x00 returns a : for valid commands and a ? for invalid commands. 

For example, if the command BG is sent in lower case, the DMC-2x00 will return a ?. 
:bg <return> invalid command, lower case
? DMC-2x00 returns a ?

When the controller receives an invalid command the user can request the error code.  The error code 
will specify the reason for the invalid command response.  To request the error code type the command 
TC1.  For example: 

?TC1 <return> Tell Code command
1 Unrecognized Returned response

There are many reasons for receiving an invalid command response.  The most common reasons are: 
unrecognized command (such as typographical entry or lower case), command given at improper time 
(such as during motion), or a command out of range (such as exceeding maximum speed).  A complete 
listing of all codes is listed in the TC command in the Command Reference section. 



64  •  Chapter 5  Command Basics DMC-2X00  

Interrogating the Controller 

Interrogation Commands 
The DMC-2x00 has a set of commands that directly interrogate the controller.  When the command is 
entered, the requested data is returned in decimal format on the next line followed by a carriage return 
and line feed.  The format of the returned data can be changed using the Position Format (PF), Variable 
Format (VF) and Leading Zeros (LZ) command.  See Chapter 7 and the Command Reference. 

Summary of Interrogation Commands 
RP Report Command Position
RL Report Latch 
∧R ∧V Firmware Revision Information 
SC Stop Code 
TB Tell Status 
TC Tell Error Code 
TD Tell Dual Encoder 
TE Tell Error 
TI Tell Input 
TP Tell Position 
TR Trace 
TS Tell Switches 
TT Tell Torque 
TV Tell Velocity 

 

For example, the following example illustrates how to display the current position of the X axis: 
TP A <return> Tell position A
0000000000 Controllers Response
TP AB <return> Tell position A and B
0000000000,0000000000 Controllers Response

Interrogating Current Commanded Values. 
Most commands can be interrogated by using a question mark (?) as the axis specifier.  Type the 
command followed by a ? for each axis requested.   

PR ?,?,?,? Request A,B,C,D values
PR ,? Request B value only

The controller can also be interrogated with operands. 

Operands 
Most DMC-2x00 commands have corresponding operands that can be used for interrogation.  
Operands must be used inside of valid DMC expressions.  For example, to display the value of an 
operand, the user could use the command: 

 MG ‘operand’ where ‘operand’ is a valid DMC operand 



DMC-2X00 Chapter 5  Command Basics   65  

All of the command operands begin with the underscore character (_).  For example, the value of the 
current position on the A axis can be assigned to the variable ‘V’ with the command: 

 V=_TPA 

The Command Reference denotes all commands which have an equivalent operand as "Used as an 
Operand".  Also, see description of operands in Chapter 7. 

Command Summary 
For a complete command summary, see Command Reference manual. 



66  •  Chapter 5  Command Basics DMC-2X00  

THIS PAGE LEFT BLANK INTENTIONALLY 



DMC-2X00 Chapter 6  Programming Motion   67  

 

Chapter 6  Programming Motion 

Overview 
The DMC-2x00 provides several modes of motion, including independent positioning and jogging, 
coordinated motion, electronic cam motion, and electronic gearing.  Each one of these modes is 
discussed in the following sections.   

The DMC-2x10 is a single axis controller and uses A-axis motion only.  Likewise, the DMC-2x20 uses 
A and B, the DMC-2x30 uses A,B and C, and the DMC-2x40 uses A,B,C and D.  The DMC-2x50 uses 
A,B,C,D, and E.  The DMC-2x60 uses A,B,C,D,E, and F.  The DMC-2x70 uses A,B,C,D,E,F and G.  
The DMC-2x80 uses the axes A,B,C,D,E,F,G, and H.   

The example applications described below will help guide you to the appropriate mode of motion. 

 

 

Example Application Mode of Motion Commands 
Absolute or relative positioning where each axis is 
independent and follows prescribed velocity 
profile. 

Independent Axis Positioning PA,PR 
SP,AC,DC 

Velocity control where no final endpoint is 
prescribed.  Motion stops on Stop command. 

Independent Jogging JG 
AC,DC 
ST 

Motion Path described as incremental position 
points versus time. 

Contour Mode CM 
CD 
DT 
WC 

2,3 or 4 axis coordinated motion where path is 
described by linear segments. 

Linear Interpolation LM 
LI,LE 
VS,VR 
VA,VD 

2-D motion path consisting of arc segments and 
linear segments, such as engraving or quilting. 

Coordinated Motion VM 
VP 
CR 
VS,VR 
VA,VD 
VE 



68  •  Chapter 6  Programming Motion DMC-2X00  

Third axis must remain tangent to 2-D motion path, 
such as knife cutting. 

Coordinated motion with tangent 
axis specified 

VM 
VP 
CR 
VS,VA,VD 
TN 
VE 

Electronic gearing where slave axes are scaled to 
master axis which can move in both directions. 

Electronic Gearing GA 
GR 
GM (if gantry) 

Master/slave where slave axes must follow a 
master such as conveyer speed. 

Electronic Gearing GA 
GR 

Moving along arbitrary profiles or mathematically 
prescribed profiles such as sine or cosine 
trajectories. 

Contour Mode CM 
CD 
DT 
WC 

Teaching or Record and Play Back  Contour Mode with Automatic 
Array Capture 

CM 
CD 
DT 
WC 
RA 
RD 
RC 

Backlash Correction Dual Loop DV 

Following a trajectory based on a master encoder 
position 

Electronic Cam EA 
EM 
EP 
ET 
EB 
EG 
EQ 

Smooth motion while operating in independent axis 
positioning 

Independent Motion Smoothing IT 

Smooth motion while operating in vector or linear 
interpolation positioning 

Vector Smoothing VT 

Smooth motion while operating with stepper 
motors 

Stepper Motor Smoothing KS 

Gantry - two axes are coupled by gantry Gantry Mode GR 
GM 

Independent Axis Positioning 
In this mode, motion between the specified axes is independent, and each axis follows its own profile.  
The user specifies the desired absolute position (PA) or relative position (PR), slew speed (SP), 
acceleration ramp (AC), and deceleration ramp (DC), for each axis.  On begin (BG), the DMC-2x00 
profiler generates the corresponding trapezoidal or triangular velocity profile and position trajectory.  
The controller determines a new command position along the trajectory every sample period until the 
specified profile is complete.  Motion is complete when the last position command is sent by the 
DMC-2x00 profiler.   



DMC-2X00 Chapter 6  Programming Motion   69  

NOTE: The actual motor motion may not be complete when the profile has been completed, however, 
the next motion command may be specified. 

The Begin (BG) command can be issued for all axes either simultaneously or independently.  ABC or 
D axis specifiers are required to select the axes for motion.  When no axes are specified, this causes 
motion to begin on all axes.   

The speed (SP) and the acceleration (AC) can be changed at any time during motion; however, the 
deceleration (DC) and position (PR or PA) cannot be changed until motion is complete.  Remember, 
motion is complete when the profiler is finished, not when the actual motor is in position.  The Stop 
command (ST) can be issued at any time to decelerate the motor to a stop before it reaches its final 
position. 

An incremental position movement (IP) may be specified during motion as long as the additional move 
is in the same direction.  Here, the user specifies the desired position increment, n.  The new target is 
equal to the old target plus the increment, n.  Upon receiving the IP command, a revised profile will be 
generated for motion towards the new end position.  The IP command does not require a BG.   

NOTE:  If the motor is not moving, the IP command is equivalent to the PR and BG command 
combination. 

Command Summary - Independent Axis 
COMMAND DESCRIPTION 
PR A,B,C,D Specifies relative distance 

PA A,B,C,D Specifies absolute position 

SP A,B,C,D Specifies slew speed 

AC A,B,C,D Specifies acceleration rate 

DC A,B,C,D Specifies deceleration rate 

BG ABCD Starts motion 

ST ABCD Stops motion before end of move 

IP A,B,C,D Changes position target 

IT A,B,C,D Time constant for independent motion smoothing 

AM ABCD Trip point for profiler complete 

MC ABCD Trip point for "in position" 

 

The DMC-2x00 also allows use of single axis specifiers such as PRB=2000   

Operand Summary - Independent Axis  
OPERAND DESCRIPTION 
_ACx Return acceleration rate for the axis specified by ‘x’ 

_DCx Return deceleration rate for the axis specified by ‘x’ 

_SPx Returns the speed for the axis specified by ‘x’ 

_PAx Returns current destination if ‘x’ axis is moving, otherwise returns the current commanded 
position if in a move. 

_PRx Returns current incremental distance specified for the ‘x’ axis 



70  •  Chapter 6  Programming Motion DMC-2X00  

Examples 
Absolute Position Movement 

Instruction Interpretation 
PA 10000,20000 Specify absolute A,B position 
AC 1000000,1000000 Acceleration for A,B 
DC 1000000,1000000 Deceleration for A,B 
SP 50000,30000 Speeds for A,B 
BG AB Begin motion 

Multiple Move Sequence 
Required Motion Profiles: 

A-Axis 500 counts Position 
 10000 count/sec Speed 
 500000 counts/sec

2
 Acceleration 

B-Axis 1000 counts Position 
 15000 count/sec Speed 
 500000 counts/sec

2
 Acceleration 

C-Axis 100 counts Position 
 5000 counts/sec Speed 
 500000 counts/sec2 Acceleration 

This example will specify a relative position movement on A, B and C axes.  The movement on each 
axis will be separated by 20 msec. Fig. 6.1 shows the velocity profiles for the A,B and C axis. 

Instruction Interpretation 
#A Begin Program 
PR 2000,500,100 Specify relative position movement of 2000, 500 and 100 counts 

for A,B and C axes. 
SP 15000,10000,5000 Specify speed of 10000, 15000, and 5000 counts / sec 
AC 500000,500000,500000 Specify acceleration of 500000 counts / sec2 for all axes 
DC 500000,500000,500000 Specify deceleration of 500000 counts / sec2 for all axes 
BG A Begin motion on the A axis 
WT 20 Wait 20 msec 
BG B Begin motion on the B axis 
WT 20 Wait 20 msec 
BG C Begin motion on C axis 
EN End Program 



DMC-2X00 Chapter 6  Programming Motion   71  

 
VELOCITY
(COUNTS/SEC)

20000

10000

5000

15000

20 40 60 80

TIME (ms)

100

A axis velocity profile

B axis velocity profile

C axis velocity profile

0

Figure 6.1 - Velocity Profiles of ABC 

Notes on fig 6.1:  The A and B axis have a ‘trapezoidal’ velocity profile, while the C axis has a 
‘triangular’ velocity profile.  The A and B axes accelerate to the specified speed, move at this constant 
speed, and then decelerate such that the final position agrees with the command position, PR.  The C 
axis accelerates, but before the specified speed is achieved, must begin deceleration such that the axis 
will stop at the commanded position.  All 3 axes have the same acceleration and deceleration rate, 
hence, the slope of the rising and falling edges of all 3 velocity profiles are the same. 

Independent Jogging 
The jog mode of motion is very flexible because speed, direction and acceleration can be changed 
during motion.  The user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) 
rate for each axis.  The direction of motion is specified by the sign of the JG parameters.  When the 
begin command is given (BG), the motor accelerates up to speed and continues to jog at that speed 
until a new speed or stop (ST) command is issued.  If the jog speed is changed during motion, the 
controller will make an accelerated (or decelerated) change to the new speed. 

An instant change to the motor position can be made with the use of the IP command.  Upon receiving 
this command, the controller commands the motor to a position which is equal to the specified 
increment plus the current position.  This command is useful when trying to synchronize the position 
of two motors while they are moving. 

Note that the controller operates as a closed-loop position controller while in the jog mode.  The DMC-
2x00 converts the velocity profile into a position trajectory and a new position target is generated every 
sample period.  This method of control results in precise speed regulation with phase lock accuracy. 

Command Summary - Jogging  
COMMAND DESCRIPTION

AC A,B,C,D Specifies acceleration rate
BG ABCD Begins motion
DC A,B,C,D Specifies deceleration rate
IP A,B,C,D Increments position instantly
IT A,B,C,D Time constant for independent motion smoothing
JG +/-A,B,C,D Specifies jog speed and direction
ST ABCD Stops motion



72  •  Chapter 6  Programming Motion DMC-2X00  

Parameters can be set with individual axes specifiers such as JGB=2000 (set jog speed for B axis to 
2000). 

Operand Summary - Independent Axis  
OPERAND DESCRIPTION 

_ACx Return acceleration rate for the axis specified by ‘x’ 

_DCx Return deceleration rate for the axis specified by ‘x’ 

_SPx Returns the jog speed for the axis specified by ‘x’ 

_TVx Returns the actual velocity of the axis specified by ‘x’ (averaged over .25 sec) 

Examples 

Jog in X only 
Jog A motor at 50000 count/s.  After A motor is at its jog speed, begin jogging C in reverse direction at 
25000 count/s. 

Instruction Interpretation 
#A Label 
AC 20000,,20000 Specify A,C acceleration of 20000 cts / sec 
DC 20000,,20000 Specify A,C deceleration of 20000 cts / sec 
JG 50000,,-25000 Specify jog speed and direction for A and C axis 
BG A Begin A motion 
AS A Wait until A is at speed  
BG C Begin C motion  
EN  

Joystick Jogging 
The jog speed can also be changed using an analog input such as a joystick. Assume that for a 10 volt 
input the speed must be 50000 counts/sec.  

Instruction Interpretation 
#JOY Label 
JG0 Set in Jog Mode 
BGA Begin motion 
#B Label for loop 
vl =@AN[1] Read analog input 
vel=v1*50000/10 Compute speed 
JG vel Change JG speed 
JP #B Loop 



DMC-2X00 Chapter 6  Programming Motion   73  

 

Linear Interpolation Mode 
The DMC-2x00 provides a linear interpolation mode for 2 or more axes.  In linear interpolation mode, 
motion between the axes is coordinated to maintain the prescribed vector speed, acceleration, and 
deceleration along the specified path.  The motion path is described in terms of incremental distances 
for each axis.  An unlimited number of incremental segments may be given in a continuous move 
sequence, making the linear interpolation mode ideal for following a piece-wise linear path.  There is 
no limit to the total move length. 

The LM command selects the Linear Interpolation mode and axes for interpolation.  For example, LM 
BC selects only the B and C axes for linear interpolation. 

When using the linear interpolation mode, the LM command only needs to be specified once unless the 
axes for linear interpolation change. 

Specifying the Coordinate Plane 
The DMC-2x00 allows for 2 separate sets of coordinate axes for linear interpolation mode or vector 
mode.  These two sets are identified by the letters S and T. 

To specify vector commands the coordinate plane must first be identified.  This is done by issuing the 
command CAS to identify the S plane or CAT to identify the T plane.  All vector commands will be 
applied to the active coordinate system until changed with the CA command. 

Specifying Linear Segments 
The command LI a,b,c,d,e,f,g,h specifies the incremental move distance for each axis. This means 
motion is prescribed with respect to the current axis position.  Up to 511 incremental move segments 
may be given prior to the Begin Sequence (BGS) command.  Once motion has begun, additional LI 
segments may be sent to the controller. 

The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the 
start of the motion.  To stop the motion, use the instructions STS or AB.  The command, ST, causes a 
decelerated stop.  The command, AB, causes an instantaneous stop and aborts the program, and the 
command AB1 aborts the motion only. 

The Linear End (LE) command must be used to specify the end of a linear move sequence.  This 
command tells the controller to decelerate to a stop following the last LI command.  If an LE command 
is not given, an Abort AB1 must be used to abort the motion sequence. 

It is the responsibility of the user to keep enough LI segments in the DMC-2x00 sequence buffer to 
ensure continuous motion.  If the controller receives no additional LI segments and no LE command, 
the controller will stop motion instantly at the last vector.  There will be no controlled deceleration.  
LM? or _LM returns the available spaces for LI segments that can be sent to the buffer.  511 returned 
means the buffer is empty and 511 LI segments can be sent.  A zero means the buffer is full and no 
additional segments can be sent.  As long as the buffer is not full, additional LI segments can be sent at 
PC bus speeds. 

The instruction _CS returns the segment counter.  As the segments are processed, _CS increases, 
starting at zero.  This function allows the host computer to determine which segment is being 
processed. 



74  •  Chapter 6  Programming Motion DMC-2X00  

Additional Commands 
The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration and 
deceleration.  The DMC-2x00 computes the vector speed based on the axes specified in the LM mode.  
For example, LM ABC designates linear interpolation for the A,B and C axes.  The vector speed for 
this example would be computed using the equation:  

VS2=AS2+BS2+CS2, where AS, BS and CS are the speed of the A,B and C axes.   

The controller always uses the axis specifications from LM, not LI, to compute the speed. 

VT is used to set the S-curve smoothing constant for coordinated moves.  The command AV n is the 
‘After Vector’ trip point, which halts program execution until the vector distance of n has been 
reached.  

Specifying Vector Speed for Each Segment  
The instruction VS has an immediate effect and, therefore, must be given at the required time.  In some 
applications, such as CNC, it is necessary to attach various speeds to different motion segments.  This 
can be done by two functions:  < n  and  > m 

For example: LI a,b,c,d < n >m 

The first command, < n, is equivalent to commanding VSn at the start of the given segment and will 
cause an acceleration toward the new commanded speeds, subjects to the other constraints. 

The second function, > m, requires the vector speed to reach the value m at the end of the segment.  
Note that the function > m may start the deceleration within the given segment or during previous 
segments, as needed to meet the final speed requirement, under the given values of VA and VD. 

Note, however, that the controller works with one > m command at a time.  As a consequence, one 
function may be masked by another.  For example, if the function >100000 is followed by >5000, and 
the distance for deceleration is not sufficient, the second condition will not be met.  The controller will 
attempt to lower the speed to 5000, but will reach that at a different point. 

As an example, consider the following program. 
Instruction Interpretation 

#ALT  Label for alternative program 
DP 0,0  Define Position of A and B axis to be 0 
LMAB Define linear mode between A and B axes. 
LI 4000,0 <4000 >1000 Specify first linear segment with a vector speed of 4000 and end 

speed 1000 
LI 1000,1000 < 4000 >1000 Specify second linear segment with a vector speed of 4000 and end 

speed 1000 
LI 0,5000 < 4000 >1000 Specify third linear segment with a vector speed of 4000 and end 

speed 1000 
LE  End linear segments 
BGS  Begin motion sequence 
EN Program end 

Changing Feed Rate: 
The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of 
0.0001.  This command takes effect immediately and causes VS to be scaled.  VR also applies when 
the vector speed is specified with the ‘<’ operator.  This is a useful feature for feed rate override.  VR 
does not ratio the accelerations.  For example, VR 0.5 results in the specification VS 2000 to be 
divided in half. 



DMC-2X00 Chapter 6  Programming Motion   75  

Command Summary - Linear Interpolation 
COMMAND DESCRIPTION 

LM abcdefgh Specify axes for linear interpolation 

LM? Returns number of available spaces for linear segments in DMC-2x00 sequence 
buffer.  Zero means buffer full.  512 means buffer empty. 

LI a,b,c,d,e,f,g,h < n Specify incremental distances relative to current position, and assign vector speed n. 

VS n Specify vector speed 

VA n Specify vector acceleration 

VD n Specify vector deceleration 

VR n Specify the vector speed ratio 

BGS Begin Linear Sequence 

CS Clear sequence 

LE Linear End- Required at end of LI command sequence 

LE? Returns the length of the vector (resets after 2147483647) 

AMS Trip point for After Sequence complete 

AV n Trip point for After Relative Vector distance, n  

VT S curve smoothing constant for vector moves 

Operand Summary - Linear Interpolation  
OPERAND DESCRIPTION 

_AV Return distance traveled 

_CS Segment counter - returns number of the segment in the sequence, starting at zero. 

_LE  Returns length of vector (resets after 2147483647) 

_LM Returns number of available spaces for linear segments in DMC-2x00 sequence 
buffer.  Zero means buffer full.  512 means buffer empty. 

_VPm Return the absolute coordinate of the last data point along the trajectory.   
(m= A,B,C,D,E,F,G or H) 

To illustrate the ability to interrogate the motion status, consider the first motion segment of our 
example, #LMOVE, where the A axis moves toward the point A=5000.  Suppose that when A=3000, 
the controller is interrogated using the command ‘MG _AV’.  The returned value will be 3000.  The 
value of  _CS, _VPA and _VPB will be zero. 

Now suppose that the interrogation is repeated at the second segment when B=2000.  The value of  
_AV at this point is 7000, _CS equals 1, _VPA=5000 and _VPB=0. 

Example 

Linear Interpolation Motion 
In this example, the AB system is required to perform a 90° turn.  In order to slow the speed around 
the corner, we use the AV 4000 trip point, which slows the speed to 1000 count/s.  Once the motors 
reach the corner, the speed is increased back to 4000 cts / s. 

 
Instruction Interpretation 
#LMOVE Label 



76  •  Chapter 6  Programming Motion DMC-2X00  

DP 0,0 Define position of A and B axes to be 0 
LMAB Define linear mode between A and B axes. 
LI 5000,0 Specify first linear segment 
LI 0,5000 Specify second linear segment 
LE End linear segments 
VS 4000 Specify vector speed 
BGS Begin motion sequence 
AV 4000 Set trip point to wait until vector distance of 4000 is reached 
VS 1000 Change vector speed 
AV 5000 Set trip point to wait until vector distance of 5000 is reached 
VS 4000 Change vector speed 
EN Program end 

Linear Move 
Make a coordinated linear move in the CD plane.  Move to coordinates 40000, 30000 counts at a 
vector speed of 100000 counts/sec and vector acceleration of 1000000 counts/sec2. 

Instruction Interpretation 
LM CD Specify axes for linear interpolation 
LI,,40000,30000 Specify CD distances 
LE Specify end move 
VS 100000 Specify vector speed 
VA 1000000 Specify vector acceleration 
VD 1000000 Specify vector deceleration 
BGS Begin sequence 

 

Note that the above program specifies the vector speed, VS, and not the actual axis speeds VC and VD.  
The axis speeds are determined by the DMC-2x00 from:  

 VS VC VD = + 2 2  
The resulting profile is shown in Figure 6.2. 



DMC-2X00 Chapter 6  Programming Motion   77  

 

POSITION C 

0 

0 40000 

FEEDRATE 
 

0 0.1 0.5 0.6 

4000 36000

30000 

27000 

3000 

VELOCITY 
C-AXIS 

VELOCITY 
D-AXIS 

POSITION D 

TIME (sec)

TIME (sec)

TIME (sec)  
Figure 6.2 - Linear Interpolation 



78  •  Chapter 6  Programming Motion DMC-2X00  

Multiple Moves 
This example makes a coordinated linear move in the AB plane.  The Arrays VA and VB are used to 
store 750 incremental distances which are filled by the program #LOAD. 

Instruction Interpretation 
#LOAD Load Program 
DM VA [750],VB [750] Define Array 
count=0 Initialize Counter 
n=0 Initialize position increment 
#LOOP LOOP 
VA [count]=n Fill Array VA 
VB [count]=n Fill Array VB 
n=n+10 Increment position 
count = count +1 Increment counter 
JP #LOOP, count <750 Loop if array not full 
#A Label 
LM AB Specify linear mode for AB 
count =0 Initialize array counter 
#LOOP2;JP#LOOP2,_LM=0 If sequence buffer full, wait 
JS#C, count =500 Begin motion on 500th segment 
LI VA[count],VB[count] Specify linear segment 
count = count +1 Increment array counter 
JP #LOOP2, count <750 Repeat until array done 
LE End Linear Move 
AMS After Move sequence done 
MG "DONE" Send Message 
EN End program 
#C;BGS;EN Begin Motion Subroutine 

Vector Mode: Linear and Circular Interpolation Motion 
The DMC-2x00 allows a long 2-D path consisting of linear and arc segments to be prescribed.  Motion 
along the path is continuous at the prescribed vector speed even at transitions between linear and 
circular segments.  The DMC-2x00 performs all the complex computations of linear and circular 
interpolation, freeing the host PC from this time intensive task. 

The coordinated motion mode is similar to the linear interpolation mode.  Any pair of two axes may be 
selected for coordinated motion consisting of linear and circular segments.  In addition, a third axis can 
be controlled such that it remains tangent to the motion of the selected pair of axes.  Note that only one 
pair of axes can be specified for coordinated motion at any given time. 

The command VM m,n,p where ‘m’ and ‘n’ are the coordinated pair and p is the tangent axis. 

NOTE: the commas which separate m,n and p are not necessary.  For example, VM ABC selects the 
AD axes for coordinated motion and the C-axis as the tangent. 

Specifying the Coordinate Plane 
The DMC-2x00 allows for 2 separate sets of coordinate axes for linear interpolation mode or vector 
mode.  These two sets are identified by the letters S and T. 



DMC-2X00 Chapter 6  Programming Motion   79  

To specify vector commands the coordinate plane must first be identified.  This is done by issuing the 
command CAS to identify the S plane or CAT to identify the T plane.  All vector commands will be 
applied to the active coordinate system until changed with the CA command. 

Specifying Vector Segments 
The motion segments are described by two commands; VP for linear segments and CR for circular 
segments.  Once a set of linear segments and/or circular segments have been specified, the sequence is 
ended with the command VE.  This defines a sequence of commands for coordinated motion.  
Immediately prior to the execution of the first coordinated movement, the controller defines the current 
position to be zero for all movements in a sequence.  

NOTE:  This ‘local’ definition of zero does not affect the absolute coordinate system or subsequent 
coordinated motion sequences.  

The command, VP xy specifies the coordinates of the end points of the vector movement with respect 
to the starting point.  Non-sequential axes do not require comma delimitation.  The command, CR r,q,d 
define a circular arc with a radius r, starting angle of q, and a traversed angle d.  The convention for q 
is that zero corresponds to the positive horizontal direction and, for both q and d, the counter-clockwise 
(CCW) rotation is positive. 

Up to 511 segments of CR or VP may be specified in a single sequence and must be ended with the 
command VE.  The motion can be initiated with a Begin Sequence (BGS) command.  Once motion 
starts, additional segments may be added. 

The Clear Sequence (CS) command can be used to remove previous VP and CR commands which 
were stored in the buffer prior to the start of the motion.  To stop the motion, use the instructions STS 
or AB1.  ST stops motion at the specified deceleration.  AB1 aborts the motion instantaneously. 

The Vector End (VE) command must be used to specify the end of the coordinated motion.  This 
command requires the controller to decelerate to a stop following the last motion requirement.  If a VE 
command is not given, an Abort (AB1) must be used to abort the coordinated motion sequence. 

It is the responsibility of the user to keep enough motion segments in the DMC-2x00 sequence buffer 
to ensure continuous motion.  If the controller receives no additional motion segments and no VE 
command, the controller will stop motion instantly at the last vector.  There will be no controlled 
deceleration.  LM? or _LM returns the available spaces for motion segments that can be sent to the 
buffer.  511 returned means the buffer is empty and 511 segments can be sent.  A zero means the 
buffer is full and no additional segments can be sent.  As long as the buffer is not full, additional 
segments can be sent at PC bus speeds. 

The operand _CS can be used to determine the value of the segment counter.   

Additional commands 
The commands VS n, VA n and VD n are used for specifying the vector speed, acceleration, and 
deceleration.   

VT is the s curve smoothing constant used with coordinated motion.   

Specifying Vector Speed for Each Segment: 
The vector speed may be specified by the immediate command VS.  It can also be attached to a motion 
segment with the instructions 

 VP  a,b < n >m  

 CR r,θ,δ < n >m 



80  •  Chapter 6  Programming Motion DMC-2X00  

The first command, <n, is equivalent to commanding VSn at the start of the given segment and will 
cause an acceleration toward the new commanded speeds, subjects to the other constraints. 

The second function, > m, requires the vector speed to reach the value m at the end of the segment.  
Note that the function > m may start the deceleration within the given segment or during previous 
segments, as needed to meet the final speed requirement, under the given values of VA and VD. 

Note, however, that the controller works with one > m command at a time.  As a consequence, one 
function may be masked by another.  For example, if the function >100000 is followed by >5000, and 
the distance for deceleration is not sufficient, the second condition will not be met.  The controller will 
attempt to lower the speed to 5000, but will reach that at a different point. 

Changing Feed rate: 
The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .0001.  
This command takes effect immediately and causes VS scaled.  VR also applies when the vector speed 
is specified with the ‘<’ operator.  This is a useful feature for feed rate override.  VR does not ratio the 
accelerations.  For example, VR .5 results in the specification VS 2000 to be divided by two 

Compensating for Differences in Encoder Resolution: 
By default, the DMC-2x00 uses a scale factor of 1:1 for the encoder resolution when used in vector 
mode.  If this is not the case, the command, ES can be used to scale the encoder counts.  The ES 
command accepts two arguments which represent the number of counts for the two encoders used for 
vector motion.  The smaller ratio of the two numbers will be multiplied by the higher resolution 
encoder.   For more information, see ES command in Chapter 11, Command Summary. 

Trippoints: 
The AV n command is the After Vector , which waits for the vector relative distance of n to occur 
before executing the next command in a program. 

Tangent Motion: 
Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent to the 
coordinated motion path.  To handle these applications, the DMC-2x00 allows one axis to be specified 
as the tangent axis.  The VM command provides parameter specifications for describing the 
coordinated axes and the tangent axis. 

VM m,n,p m,n specifies coordinated axes p specifies tangent axis such as A,B,C or 
D p=N turns off tangent axis 

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and define 
its offset and scale factor via the TN m,n command.  m defines the scale factor in counts/degree and n 
defines the tangent position that equals zero degrees in the coordinated motion plane.  The operand 
_TN can be used to return the initial position of the tangent axis. 

Command Summary - Coordinated Motion Sequence 
Command Description 
VM m,n Specifies the axes for the planar motion where m and n represent the planar axes and p is 

the tangent axis. 

VP m,n Return coordinate of last point, where m=A,B,C or D. 

CR r,Θ, ±∆Θ Specifies arc segment where r is the radius, Θ is the starting angle and ∆Θ is the travel 
angle.  Positive direction is CCW. 

VS n Specify vector speed or feed rate of sequence. 



DMC-2X00 Chapter 6  Programming Motion   81  

VA n Specify vector acceleration along the sequence. 

VD n Specify vector deceleration along the sequence. 

VR n Specify vector speed ratio 

BGS Begin motion sequence. 

CS Clear sequence.  

AV n Trip point for After Relative Vector distance, n. 

AMS Holds execution of next command until Motion Sequence is complete. 

TN m,n Tangent scale and offset. 

ES m,n Ellipse scale factor. 

VT S curve smoothing constant for coordinated moves 

LM? Return number of available spaces for linear and circular segments in DMC-2x00 
sequence buffer.  Zero means buffer is full.  512 means buffer is empty. 

Operand Summary - Coordinated Motion Sequence 
operand Description 
_VPM The absolute coordinate of the axes at the last intersection along the sequence. 

_AV Distance traveled. 

_LM  Number of available spaces for linear and circular segments in DMC-2x00 sequence 
buffer.  Zero means buffer is full.  512 means buffer is empty. 

_CS Segment counter - Number of the segment in the sequence, starting at zero. 

_VE Vector length of coordinated move sequence. 

 

When AV is used as an operand, _AV returns the distance traveled along the sequence. 

The operands _VPA and _VPB can be used to return the coordinates of the last point specified along 
the path. 

Example 

Tangent Axis 
Assume an AB table with the C-axis controlling a knife.  The C-axis has a 2000 quad counts/rev 
encoder and has been initialized after power-up to point the knife in the +B direction.  A 180° circular 
cut is desired, with a radius of 3000, center at the origin and a starting point at (3000,0).  The motion is 
CCW, ending at (-3000,0).  Note that the 0° position in the AB plane is in the +A direction.  This 
corresponds to the position -500 in the Z-axis, and defines the offset.  The motion has two parts.  First, 
A, B and C are driven to the starting point, and later, the cut is performed.  Assume that the knife is 
engaged with output bit 0. 

Instruction Interpretation 
#EXAMPLE Example program 
VM ABC AB coordinate with C as tangent 
TN 2000/360,-500 2000/360 counts/degree, position -500 is 0 degrees in AB plane 
CR 3000,0,180 3000 count radius, start at 0 and go to 180 CCW 
VE End vector 
CB0 Disengage knife 



82  •  Chapter 6  Programming Motion DMC-2X00  

PA 3000,0,_TN Move A and B to starting position, move C to initial tangent 
position 

BG ABC Start the move to get into position 
AM ABC When the move is complete 
SB0 Engage knife 
WT50 Wait 50 msec for the knife to engage 
BGS Do the circular cut 
AMS After the coordinated move is complete 
CB0 Disengage knife 
MG "ALL DONE"  
EN End program 

Coordinated Motion 
Traverse the path shown in Fig. 6.3.  Feed rate is 20000 counts/sec.  Plane of motion is AB. 

 
Instruction Interpretation 
VM AB Specify motion plane 
VS 20000 Specify vector speed 
VA 1000000 Specify vector acceleration 
VD 1000000 Specify vector deceleration 
VP -4000,0 Segment AB 
CR 1500,270,-180 Segment BC 
VP 0,3000 Segment CD 
CR 1500,90,-180 Segment DA 
VE End of sequence 
BGS Begin Sequence 

 

The resulting motion starts at the point A and moves toward points B, C, D, A. Suppose that we 
interrogate the controller when the motion is halfway between the points A and B. 

 The value of _AV is 2000 

 The value of _CS is 0 

 _VPA and _VPB contain the absolute coordinate of the point A 

Suppose that the interrogation is repeated at a point, halfway between the points C and D. 

 The value of _AV is 4000+1500π+2000=10,712 

 The value of _CS is 2 

 _VPA,_VPB contain the coordinates of the point C 



DMC-2X00 Chapter 6  Programming Motion   83  

C (-4000,3000)

R = 1500

B (-4000,0)

D (0,3000)

A (0,0)  
 

Figure 6.3 - The Required Path 

Electronic Gearing 
This mode allows up to 8 axes to be electronically geared to some master axes. The masters may rotate 
in both directions and the geared axes will follow at the specified gear ratio.  The gear ratio may be 
different for each axis and changed during motion. 

The command GA ABCDEFGH specifies the master axes.   GR a,b,c,d specifies the gear ratios for the 
slaves where the ratio may be a number between +/-127.9999 with a fractional resolution of .0001.  
There are two modes:  standard gearing and gantry mode.  The gantry mode is enabled with the 
command GM.  GR 0,0,0,0 turns off gearing in both modes.  A limit switch or ST command disables 
gearing in the standard mode but not in the gantry mode. 

The command GM a,b,c,d select the axes to be controlled under the gantry mode.   The parameter 1 
enables gantry mode, and 0 disables it. 

 GR causes the specified axes to be geared to the actual position of the master.  The master axis is 
commanded with motion commands such as PR, PA or JG. 

When the master axis is driven by the controller in the jog mode or an independent motion mode, it is 
possible to define the master as the command position of that axis, rather than the actual position.  The 
designation of the commanded position master is by the letter, C.  For example, GACA indicates that 
the gearing is the commanded position of A. 

An alternative gearing method is to synchronize the slave motor to the commanded vector motion of 
several axes performed by GAS.  For example, if the A and B motor form a circular motion, the C axis 
may move in proportion to the vector move.  Similarly, if A,B and C perform a linear interpolation 
move, W can be geared to the vector move. 

Electronic gearing allows the geared motor to perform a second independent or coordinated move in 
addition to the gearing.  For example, when a geared motor follows a master at a ratio of 1:1, it may be 
advanced an additional distance with PR, or JG, commands, or VP, or LI. 



84  •  Chapter 6  Programming Motion DMC-2X00  

Command Summary - Electronic Gearing 
command description 
GA n Specifies master axes for gearing where: 

n = A,B,C,D,E,F,G,H for main encoder as master. 

 n = CA,CB,CC,CD,CE,CF,CG,CH for commanded position. 

 n = DA, DB, DC, DD, DE, DF,DG,DH for auxiliary encoders. 

 n = S or T for gearing to coordinated motion. 

GR a,b,c,d,e,f,g,h Sets gear ratio for slave axes.  0 disables electronic gearing for specified axis. 

GM a,b,c,d,e,f,g,h 1 sets gantry mode, 0 disables gantry mode. 

MR a,b,c,d Trip point for reverse motion past specified value.  Only one field may be used. 

MF a,b,c,d Trip point for forward motion past specified value.  Only one field may be used. 

Example  

Simple Master/Slave 
Master axis moves 10000 counts at slew speed of 100000 counts/sec.  B is defined as the master.  
A,C,D are geared to master at ratios of 5,-.5 and 10 respectively. 

Instruction Interpretation 
GA B,,B,B Specify master axes as B 
GR 5,,-.5,10 Set gear ratios 
PR ,10000 Specify B position 
SP ,100000 Specify B speed 
BGB Begin motion 

Electronic Gearing 
Objective: Run two geared motors at speeds of 1.132 and -0.045 times the speed of an external master.  
The master is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder). 

Solution:  Use a DMC-2x30 controller, where the C-axis is the master and A and B are the geared 
axes. 

Instruction Interpretation 
MO C  Turn C off, for external master 
GA C,C  Specify C as the master axis for both A and B. 
GR 1.132,-.045  Specify gear ratios 

Now suppose the gear ratio of the A-axis is to change on-the-fly to 2.  This can be achieved by 
commanding: 

GR 2 Specify gear ratio for A axis to be 2 

Gantry Mode 
In applications where both the master and the follower are controlled by the DMC-2x00 controller, it 
may be desired to synchronize the follower with the commanded position of the master, rather than the 
actual position.  This eliminates the coupling between the axes which may lead to oscillations. 



DMC-2X00 Chapter 6  Programming Motion   85  

For example, assume that a gantry is driven by two axes, A and B, on both sides.  This requires the 
gantry mode for strong coupling between the motors.   The A-axis is the master and the B-axis is the 
follower.  To synchronize B with the commanded position of A, use the instructions: 

 
Instruction Interpretation 
GA, CA Specify the commanded position of A as master for B. 
GR,1 Set gear ratio for Y as 1:1 
GM,1 Set gantry mode 
PR 3000 Command A motion 
BG A Start motion on A axis 

You may also perform profiled position corrections in the electronic gearing mode.  Suppose, for 
example, that you need to advance the slave 10 counts. Simply command 

IP ,10 Specify an incremental position movement of 10 on B axis. 

Under these conditions, this IP command is equivalent to: 
PR,10 Specify position relative movement of 10 on B axis 
BGB Begin motion on B axis 

Often the correction is quite large.  Such requirements are common when synchronizing cutting knives 
or conveyor belts. 

Synchronize two conveyor belts with trapezoidal velocity correction. 
Instruction Interpretation 
GA,A Define A as the master axis for B. 
GR,2 Set gear ratio 2:1 for B 
PR,300 Specify correction distance 
SP,5000 Specify correction speed 
AC,100000 Specify correction acceleration 
DC,100000 Specify correction deceleration 
BGB Start correction 

Electronic Cam 
The electronic cam is a motion control mode which enables the periodic synchronization of several 
axes of motion. Up to 7 axes can be slaved to one master axis.  The master axis encoder must be input 
through a main encoder port. 

The electronic cam is a more general type of electronic gearing which allows a table-based relationship 
between the axes.  It allows synchronizing all the controller axes.  For example, the DMC-2x80 
controller may have one master and up to seven slaves.   

To illustrate the procedure of setting the cam mode, consider the cam relationship for the slave axis B, 
when the master is A.  Such a graphic relationship is shown in Figure 6.4. 

Step 1.  Selecting the master axis 

The first step in the electronic cam mode is to select the master axis.  This is done with the 
instruction 

 EAp   where p = A,B,C,D 

 p is the selected master axis 



86  •  Chapter 6  Programming Motion DMC-2X00  

For the given example, since the master is x, we specify EAA 

Step 2.  Specify the master cycle and the change in the slave axes.  

 In the electronic cam mode, the position of the master is always expressed modulo one cycle.  
In this example, the position of x is always expressed in the range between 0 and 6000.   
Similarly, the slave position is also redefined such that it starts at zero and ends at 1500.  At 
the end of a cycle when the master is 6000 and the slave is 1500, the positions of both A and 
B are redefined as zero.  To specify the master cycle and the slave cycle change, we use the 
instruction EM. 

  EM a,b,c,d 

 where a,b,c,d specify the cycle of the master and the total change of the slaves over one cycle. 

 The cycle of the master is limited to 8,388,607 whereas the slave change per cycle is limited 
to 2,147,483,647.  If the change is a negative number, the absolute value is specified.  For the 
given example, the cycle of the master is 6000 counts and the change in the slave is 1500.  
Therefore, we use the instruction: 

  EM 6000,1500 

Step 3. Specify the master interval and starting point. 

 Next we need to construct the ECAM table.  The table is specified at uniform intervals of 
master positions.  Up to 256 intervals are allowed.  The size of the master interval and the 
starting point are specified by the instruction: 

  EP m,n 

 where m is the interval width in counts, and n is the starting point. 

 For the given example, we can specify the table by specifying the position at the master points 
of 0, 2000, 4000 and 6000.  We can specify that by 

  EP 2000,0 

Step 4. Specify the slave positions. 

 Next, we specify the slave positions with the instruction 

  ET[n]= a,b,c,d 

 where n indicates the order of the point.   

 The value, n, starts at zero and may go up to 256.  The parameters A,B,C,D indicate the 
corresponding slave position.  For this example, the table may be specified by 

  ET[0]=,0 

  ET[1]=,3000 

  ET[2]=,2250 

  ET[3]=,1500 

 This specifies the ECAM table.   

Step 5. Enable the ECAM 

 To enable the ECAM mode, use the command 
  EB n 
 where n=1 enables ECAM mode and n=0 disables ECAM mode. 
Step 6. Engage the slave motion 
 To engage the slave motion, use the instruction 
  EG a,b,c,d 



DMC-2X00 Chapter 6  Programming Motion   87  

 where a,b,c,d are the master positions at which the corresponding slaves must be engaged. 
 If the value of any parameter is outside the range of one cycle, the cam engages immediately.  

When the cam is engaged, the slave position is redefined, modulo one cycle. 
Step 7. Disengage the slave motion 
 To disengage the cam, use the command 
  EQ a,b,c,d 
 where a,b,c,d are the master positions at which the corresponding slave axes are disengaged. 

Master A4000

2250

2000 6000

3000

1500

0
 

Figure 6.4:  Electronic Cam Example 

This disengages the slave axis at a specified master position.  If the parameter is outside the master 
cycle, the stopping is instantaneous. 

Step 8.  Create program to generate ECAM table 
To illustrate the complete process, consider the cam relationship described by 
the equation: 

 B = 0.5 * A + 100 sin (0.18*A) 

where A is the master, with a cycle of 2000 counts. 
The cam table can be constructed manually, point by point, or automatically by a program.  The 

following program includes the set-up.  The instruction EAA defines A as the master axis.  
The cycle of the master is 2000.  Over that cycle, A varies by 1000.  This leads to the 
instruction EM 2000,1000. 

Suppose we want to define a table with 100 segments.  This implies increments of 20 counts each.  
If the master points are to start at zero, the required instruction is EP 20,0. 

The following routine computes the table points.  As the phase equals 0.18A and A varies in 
increments of 20, the phase varies by increments of 3.6°.  The program then computes the 
values of B according to the equation and assigns the values to the table with the instruction 
ET[N] = ,B. 



88  •  Chapter 6  Programming Motion DMC-2X00  

 
Instruction Interpretation 
#SETUP Label
EAA Select A as master
EM 2000,1000 Cam cycles
EP 20,0 Master position increments
n = 0 Index
#LOOP Loop to construct table from equation 
p = n∗3.6 Note  3.6 = 0.18∗20
s = @SIN [P] *100 Define sine position
b = n *10+s Define slave position
ET [n] =, b Define table
n = n+1 Update Counter
JP #LOOP, n<=100 Repeat the process
EN End Program

Step 9.  Create program to run ECAM mode 

Now suppose that the slave axis is engaged with a start signal, input 1, but that both the 
engagement and disengagement points must be done at the center of the cycle:  A = 1000 and 
B = 500.  This implies that B must be driven to that point to avoid a jump. 

This is done with the program: 
Instruction Interpretation   
#RUN Label
EB1 Enable cam
PA,500 starting position
SP,5000 B speed
BGB Move B motor
AM After B moved
AI1 Wait for start signal
EG,1000 Engage slave
AI - 1 Wait for stop signal
EQ,1000 Disengage slave
EN End

Command Summary - Electronic CAM 
Command Description
EA p Specifies master axes for electronic cam where:
EB n Enables the ECAM
EC n ECAM counter - sets the index into the ECAM table
EG a,b,c,d Engages ECAM
EM a,b,c,d Specifies the change in position for each axis of the CAM cycle 
EP m,n Defines CAM table entry size and offset
EQ m,n Disengages ECAM at specified position
ET[n] Defines the ECAM table entries



DMC-2X00 Chapter 6  Programming Motion   89  

Operand Summary - Electronic CAM 
command description 
_EB Contains State of ECAM 

_EC Contains current ECAM index 

_EGa Contains ECAM status for each axis 

_EM Contains size of cycle for each axis 

_EP Contains value of the ECAM table interval 

_EQx Contains ECAM status for each axis 

Example 

Electronic CAM 
The following example illustrates a cam program with a master axis, C, and two slaves, A and B 

 
Instruction Interpretation 

#A;vl=0 Label;  Initialize variable
PA 0,0;BGAB;AMAB Go to position 0,0 on A and B axes 
EA C C axis as the Master for ECAM 
EM 0,0,4000 Change for C is 4000, zero for A, B  
EP400,0 ECAM interval is 400 counts with zero start 
ET[0]=0,0 When master is at 0 position; 1st point. 
ET[1]=40,20 2nd point in the ECAM table 
ET[2]=120,60 3rd point in the ECAM table
ET[3]=240,120 4th point in the ECAM table
ET[4]=280,140 5th point in the ECAM table
ET[5]=280,140 6th point in the ECAM table
ET[6]=280,140 7th point in the ECAM table
ET[7]=240,120 8th point in the ECAM table
ET[8]=120,60 9th point in the ECAM table
ET[9]=40,20 10th point in the ECAM table 
ET[10]=0,0 Starting point for next cycle
EB 1 Enable ECAM mode 
JGC=4000 Set C to jog at 4000
EG 0,0 Engage both A and B when Master = 0 
BGC Begin jog on C axis
#LOOP;JP#LOOP,vl=0 Loop until the variable is set
EQ2000,2000 Disengage A and B when Master = 2000 
MF,, 2000 Wait until the Master goes to 2000 
ST C Stop the C axis motion
EB 0 Exit the ECAM mode
EN End of the program

The above example shows how the ECAM program is structured and how the commands can be given 
to the controller.  Figure 6.5 provides the results captured by the WSDK program.  This shows how the 
motion will be seen during the ECAM cycles.  The first graph is for the A axis, the second graph 
shows the cycle on the B axis and the third graph shows the cycle of the C axis.   

 



90  •  Chapter 6  Programming Motion DMC-2X00  

 
Figure 6.5 – Position Profiles of XYZ 

Contour Mode 
The DMC-2x00 also provides a contouring mode.  This mode allows any arbitrary position curve to be 
prescribed for 1 to 8 axes.  This is ideal for following computer generated paths such as parabolic, 
spherical or user-defined profiles.  The path is not limited to straight line and arc segments and the path 
length may be infinite. 

Specifying Contour Segments 
The Contour Mode is specified with the command, CM.  For example, CMAC specifies contouring on 
the A and C axes.  Any axes that are not being used in the contouring mode may be operated in other 
modes. 

A contour is described by position increments which are described with the command, CD a,b,c,d over 

a time interval, DT n.  The parameter, n, specifies the time interval.  The time interval is defined as 2n 
ms, where n is a number between 1 and 8.  The controller performs linear interpolation between the 
specified increments, where one point is generated for each millisecond. 

Consider, for example, the trajectory shown in Fig. 6.6.  The position A may be described by the 
points: 

Point 1 A=0 at T=0ms 
Point 2 A=48 at T=4ms 
Point 3 A=288 at T=12ms 
Point 4 A=336 at T=28ms 

The same trajectory may be represented by the increments 



DMC-2X00 Chapter 6  Programming Motion   91  

Increment 1 DA=48 Time=4 DT=2 
Increment 2 DA=240 Time=8 DT=3 
Increment 3 DA=48 Time=16 DT=4 

When the controller receives the command to generate a trajectory along these points, it interpolates 
linearly between the points.  The resulting interpolated points include the position 12 at 1 msec, 
position 24 at 2 msec, etc. 

The programmed commands to specify the above example are: 
Instruction Interpretation 
#A Label 
CMA Specifies A axis for contour mode 
DT 2 Specifies first time interval, 22 ms 
CD 48;WC Specifies first position increment 
DT 3 Specifies second time interval, 23 ms 
CD 240;WC Specifies second position increment 
DT 4 Specifies the third time interval, 24 ms 
CD 48;WC Specifies the third position increment 
DT0;CD0 Exits contour mode 
EN  

POSITION
(COUNTS)

240

96

48

192

TIME (ms)

0 4 8 12 16 20 24 28

288

336

SEGMENT 1 SEGMENT 2 SEGMENT 3

Figure 6.6 - The Required Trajectory 

Additional Commands 
The command, WC, is used as a trip point "When Complete".  This allows the DMC-2x00 to use the 
next increment only when it is finished with the previous one. Zero parameters for DT followed by 
zero parameters for CD exit the contour mode. 

If no new data record is found and the controller is still in the contour mode, the controller waits for 
new data.  No new motion commands are generated while waiting.  If bad data is received, the 
controller responds with a ?. 



92  •  Chapter 6  Programming Motion DMC-2X00  

Command Summary - Contour Mode  
COMMAND DESCRIPTION 

CM ABCDEFGH Specifies which axes for contouring mode.  Any non-contouring axes may be 
operated in other modes. 

CD a,b,c,d,e,f,g,h Specifies position increment over time interval.  Range is +/-32,000.  (Zero ends 
contour mode, when issued following DT0) 

DT n Specifies time interval 2n msec for position increment, where n is an integer 
between 1 and 8.  Zero ends contour mode.  If n does not change, it does not need 
to be specified with each CD. 

WC Waits for previous time interval to be complete before next data record is 
processed. 

General Velocity Profiles 
The Contour Mode is ideal for generating any arbitrary velocity profiles.  The velocity profile can be 
specified as a mathematical function or as a collection of points. 

The design includes two parts: Generating an array with data points and running the program. 

Example 

Generating an Array 
Consider the velocity and position profiles shown in Fig. 6.7.  The objective is to rotate a motor a 
distance of 6000 counts in 120 ms.  The velocity profile is sinusoidal to reduce the jerk and the system 
vibration.  If we describe the position displacement in terms of A counts in B milliseconds, we can 
describe the motion in the following manner: 

 ( ))/2cos(1 ΒΤ−
Β
Α

= πω  

 )/2sin(
2

ΒΤ−=Χ π
π
A

B
AT  

NOTE: ω is the angular velocity; A is the position; and T is the variable, time, in milliseconds. 

In the given example, A=6000 and B=120, the position and velocity profiles are:  

 A = 50T - (6000/2π) sin (2π T/120) 

Note that the velocity, ω, in count/ms, is 

 ω = 50 [1 - cos 2π T/120] 

 



DMC-2X00 Chapter 6  Programming Motion   93  

 
Figure 6.7 - Velocity Profile with Sinusoidal Acceleration 

The DMC-2x00 can compute trigonometric functions.  However, the argument must be expressed in 
degrees.  Using our example, the equation for A is written as: 

 A = 50T - 955 sin 3T 

A complete program to generate the contour movement in this example is given below.  To generate an 
array, we compute the position value at intervals of 8 ms.  This is stored at the array pos.  Then, the 
difference between the positions is computed and is stored in the array dir.  Finally the motors are run 
in the contour mode. 

Contour Mode 
Instruction Interpretation 
#POINTS Program defines A points 
DM pos[16] Allocate memory 
DM dir[15]  
c=0;d=0 Set initial conditions, c is index 
d=0  
t=0  t is time in ms 
#A  
v1=50*t  
v2=3*t Argument in degrees 
v3=-955*@SIN[v2]+v1 Compute position 
v4=@INT[v3] Integer value of v3 
pos[c]=v4 Store in array pos 
t=t+8  
c=c+1  
JP #A,c<16  
#B Program to find position differences 
c=0  
#c  
d=c+1  
dir[c]=pos[d]- pos[c] Compute the difference and store 
c=c+1  



94  •  Chapter 6  Programming Motion DMC-2X00  

JP #c,c<15  
EN End first program 
#RUN Program to run motor 
CMA Contour Mode 
DT3 4 millisecond intervals 
c=0  
#E  
CD dif[c] Contour Distance is in dif 
WC Wait for completion 
c=c+1  
JP #E,c<15  
DT0  
CD0 Stop Contour 
EN End the program 

Teach (Record and Play-Back) 
Several applications require teaching the machine a motion trajectory.  Teaching can be accomplished 
using the DMC-2x00 automatic array capture feature to capture position data.  The captured data may 
then be played back in the contour mode.  The following array commands are used: 

DM C[n] Dimension array 
RA C[] Specify array for automatic record  (up to 4 for DMC-2x40) 
RD _TPA Specify data for capturing (such as _TPA or _TPC)  
RC n,m Specify capture time interval where n is 2n samples, m is number of records 

to be captured 
RC? or _RC Returns a 1 if recording 

Record and Playback Example 
Instruction Interpretation 
#RECORD Begin Program 
DP0 Define position for A axis to be 0 
DA*[ ] De-allocate all arrays 
DM xpos [501] Dimension 501 element array called xpos 
RA xpos [ ] Record Elements into xpos array 
RD_TPA Element to be recorded is encoder position of A axis 
MOA Motor off for A axis 
RC2 Begin Recording with a sample rate of 22 msec 
#LOOP1;JP#LOOP1,_RC=1 Loop until all elements have been recorded 
#COMPUTE Routine to determine the difference between consecutive points 
DM dx [500] Dimension a 500 element array to hold contour points 
i = 0 Set loop counter 
#LOOP2 Loop to calculate the difference 
DX[I]= xpos [i+1]- xpos [i] Calculate difference 
i=i+1 Update loop counter 
JP#LOOP2,i<500 Continue looping until dx is full 
#PLAYBK Routine to play back motion that was recorded 



DMC-2X00 Chapter 6  Programming Motion   95  

SHA Servo Here 
WT1000 Wait 1 sec (1000 msec) 
CMA Specify contour mode on A axis 
DT2 Set contour data rate to be 22 msec 
i=0 Set array index to 0 
#LOOP3 Subroutine to execute contour points 
CD dx[i];WC Contour data command; Wait for next contour point 
i=i+1 Update index 
JP#LOOP3,i<500 Continue until all array elements have been executed 
DT0 Set contour update rate to 0 
CD0 Disable the contour mode (combination of DT0 and CD0) 
EN End program 

For additional information about automatic array capture, see Chapter 7, Arrays. 

Virtual Axis 
 

The DMC-2x00 controller has an additional virtual axis designated as the N axis. This axis has no 
encoder and no DAC.  However, it can be commanded by the commands:   

AC, DC, JG, SP, PR, PA, BG, IT, GA, VM, VP, CR, ST, DP, RP, EA. 

The main use of the virtual axis is to serve as a virtual master in ECAM modes, and to perform an 
unnecessary part of a vector mode.  These applications are illustrated by the following examples. 

Ecam master example 
Suppose that the motion of the AB axes is constrained along a path that can be described by an 
electronic cam table.  Further assume that the ecam master is not an external encoder but has to be a 
controlled variable. 

This can be achieved by defining the N axis as the master with the command EAN and setting the 
modulo of the master with a command such as EMN= 4000.  Next, the table is constructed.  To move 
the constrained axes, simply command the N axis in the jog mode or with the PR and PA commands. 

For example, 

  PAN = 2000 

  BGN 

will cause the AB axes to move to the corresponding points on the motion cycle. 

Sinusoidal Motion Example 
The x axis must perform a sinusoidal motion of 10 cycles with an amplitude of 1000 counts and a 
frequency of 20 Hz. 

This can be performed by commanding the A and N axes to perform circular motion.  Note that the 
value of VS must be 

  VS = 2p * R * F 

where R is the radius, (amplitude) and F is the frequency in Hz. 

Set VA and VD to maximum values for the fastest acceleration. 



96  •  Chapter 6  Programming Motion DMC-2X00  

Instruction Interpretation 
VMAN Select Axes 
VA 68000000 Maximum Acceleration 
VD 68000000 Maximum Deceleration 
VS 125664 VS for 20 Hz 
CR 1000, -90, 3600 Ten Cycles 
VE  
BGS  

Stepper Motor Operation 
When configured for stepper motor operation, several commands are interpreted differently than from 
servo mode.  The following describes operation with stepper motors. 

Specifying Stepper Motor Operation  
In order to command stepper motor operation, the appropriate stepper mode jumpers must be installed.  
See chapter 2 for this installation. 

Stepper motor operation is specified by the command MT.  The argument for MT is as follows: 
2  specifies a stepper motor with active low step output pulses 
-2 specifies a stepper motor with active high step output pulses 
2.5 specifies a stepper motor with active low step output pulses and reversed direction 
-2.5 specifies a stepper motor with active high step output pulse and reversed direction 

Stepper Motor Smoothing 
The command, KS, provides stepper motor smoothing.  The effect of the smoothing can be thought of 
as a simple Resistor-Capacitor (single pole) filter.  The filter occurs after the motion profiler and has 
the effect of smoothing out the spacing of pulses for a more smooth operation of the stepper motor.  
Use of KS is most applicable when operating in full step or half step operation.  KS will cause the step 
pulses to be delayed in accordance with the time constant specified. 

When operating with stepper motors, you will always have some amount of stepper motor smoothing, 
KS.  Since this filtering effect occurs after the profiler, the profiler may be ready for additional moves 
before all of the step pulses have gone through the filter.  It is important to consider this effect since 
steps may be lost if the controller is commanded to generate an additional move before the previous 
move has been completed.  See the discussion below, Monitoring Generated Pulses vs. Commanded 
Pulses. 

The general motion smoothing command, IT, can also be used.  The purpose of the command, IT, is to 
smooth out the motion profile and decrease 'jerk' due to acceleration.  

Monitoring Generated Pulses vs. Commanded Pulses 
For proper controller operation, it is necessary to make sure that the controller has completed 
generating all step pulses before making additional moves.  This is most particularly important if you 
are moving back and forth.  For example, when operating with servo motors, the trip point AM (After 
Motion) is used to determine when the motion profiler is complete and is prepared to execute a new 
motion command.  However when operating in stepper mode, the controller may still be generating 
step pulses when the motion profiler is complete.  This is caused by the stepper motor smoothing filter, 
KS.  To understand this, consider the steps the controller executes to generate step pulses: 



DMC-2X00 Chapter 6  Programming Motion   97  

First, the controller generates a motion profile in accordance with the motion commands.   

Second, the profiler generates pulses as prescribed by the motion profile.  The pulses that are generated 
by the motion profiler can be monitored by the command, RP (Reference Position).  RP gives the 
absolute value of the position as determined by the motion profiler.  The command, DP, can be used to 
set the value of the reference position.  For example, DP 0, defines the reference position of the A axis 
to be zero. 

Third, the output of the motion profiler is filtered by the stepper smoothing filter.  This filter adds a 
delay in the output of the stepper motor pulses.  The amount of delay depends on the parameter which 
is specified by the command, KS.  As mentioned earlier, there will always be some amount of stepper 
motor smoothing.  The default value for KS is 2 which corresponds to a time constant of 6 sample 
periods. 

Fourth, the output of the stepper smoothing filter is buffered and is available for input to the stepper 
motor driver.  The pulses which are generated by the smoothing filter can be monitored by the 
command, TD (Tell Dual).  TD gives the absolute value of the position as determined by actual output 
of the buffer.  The command, DP sets the value of the step count register as well as the value of the 
reference position.  For example, DP 0, defines the reference position of the A axis to be zero. 

 

Motion Profiler Stepper Smoothing Filter
(Adds a Delay) Output Buffer

Step Count Register (TD)Reference Position (RP)

Output
(To Stepper Driver)

 

Figure 6.8 - Velocity Profiles of ABC 

Motion Complete Trip point 
When used in stepper mode, the MC command will hold up execution of the proceeding commands 
until the controller has generated the same number of steps out of the step count register as specified in 
the commanded position.  The MC trip point (Motion Complete) is generally more useful than AM trip 
point (After Motion) since the step pulses can be delayed from the commanded position due to stepper 
motor smoothing. 

Using an Encoder with Stepper Motors 
An encoder may be used on a stepper motor to check the actual motor position with the commanded 
position. If an encoder is used, it must be connected to the main encoder input.   

NOTE: The auxiliary encoder is not available while operating with stepper motors.  The position of 
the encoder can be interrogated by using the command, TP.  The position value can be defined by 
using the command, DE.   

NOTE: Closed loop operation with a stepper motor is not possible without special firmware.  Contact 
Galil for more information. 

Command Summary - Stepper Motor Operation  
command description 
DE Define Encoder Position (When using an encoder) 

DP Define Reference Position and Step Count Register 

IT Motion Profile Smoothing - Independent Time Constant 

KS Stepper Motor Smoothing 



98  •  Chapter 6  Programming Motion DMC-2X00  

MT Motor Type (2,-2,2.5 or -2.5 for stepper motors) 

RP Report Commanded Position 

TD Report number of step pulses generated by controller 

TP Tell Position of Encoder 

Operand Summary - Stepper Motor Operation 
operand Description 
_DEa Contains the value of the step count register for the ‘a’ axis 

_DPa Contains the value of the main encoder for the ‘a’ axis 

_ITa Contains the value of the Independent Time constant for the 'a' axis 

_KSa Contains the value of the Stepper Motor Smoothing Constant for the 'a' axis 

_MTa Contains the motor type value for the 'a' axis 

_RPa Contains the commanded position generated by the profiler for the ‘a’ axis 

_TDa Contains the value of the step count register for the ‘a’ axis 

_TPa Contains the value of the main encoder  for the ‘a’ axis 

Dual Loop (Auxiliary Encoder) 
The DMC-2x00 provides an interface for a second encoder for each axis except for axes configured for 
stepper motor operation and any axis used in circular compare.  When used, the second encoder is 
typically mounted on the motor or the load, but may be mounted in any position.  The most common 
use for the second encoder is backlash compensation, described below. 

The second encoder may be a standard quadrature type, or it may provide pulse and direction.  The 
controller also offers the provision for inverting the direction of the encoder rotation.  The main and 
the auxiliary encoders are configured with the CE command.  The command form is CE a,b,c,d (or 
a,b,c,d,e,f,g,h for controllers with more than 4 axes) where the parameters a,b,c,d each equal the sum 
of two integers m and n.  m configures the main encoder and n configures the auxiliary encoder. 

NOTE:  This operation is not available for axes configured for stepper motors. 



DMC-2X00 Chapter 6  Programming Motion   99  

Using the CE Command 

m= Main Encoder n= Second Encoder 

0 Normal quadrature 0 Normal quadrature 

1 Pulse & direction 4 Pulse & direction 

2 Reverse quadrature 8 Reversed quadrature 

3 Reverse pulse & direction 12 Reversed pulse & direction 

For example, to configure the main encoder for reversed quadrature, m=2, and a second encoder of 
pulse and direction, n=4, the total is 6, and the command for the A axis is 

 CE 6 

Additional Commands for the Auxiliary Encoder 
The command, DE a,b,c,d can be used to define the position of the auxiliary encoders.  For example, 

 DE 0,500,-30,300 

sets their initial values. 

The positions of the auxiliary encoders may be interrogated with the command, DE?.  For example 

 DE ?,,? 

returns the value of the A and C auxiliary encoders. 

The auxiliary encoder position may be assigned to variables with the instructions 

 V1= _DEA 

The command, TD a,b,c,d, returns the current position of the auxiliary encoder. 

The command, DV a,b,c,d, configures the auxiliary encoder to be used for backlash compensation. 

Backlash Compensation 
There are two methods for backlash compensation using the auxiliary encoders: 

1. Continuous dual loop 

2. Sampled dual loop 

To illustrate the problem, consider a situation in which the coupling between the motor and the load 
has a backlash.  To compensate for the backlash, position encoders are mounted on both the motor and 
the load. 

The continuous dual loop combines the two feedback signals to achieve stability.  This method 
requires careful system tuning, and depends on the magnitude of the backlash.  However, once 
successful, this method compensates for the backlash continuously. 

The second method, the sampled dual loop, reads the load encoder only at the end point and performs a 
correction.  This method is independent of the size of the backlash.  However, it is effective only in 
point-to-point motion systems which require position accuracy only at the endpoint. 

Example 
Continuous Dual Loop 
The motor (aux) encoder needs a finer resolution than load (main) encoder.  Connect the load encoder 
to the main encoder port and connect the motor encoder to the dual encoder port.  The dual loop 



100  •  Chapter 6  Programming Motion DMC-2X00  

method splits the filter function between the two encoders.  It applies the KP (proportional) and KI 
(integral) terms to the position error, based on the load encoder, and applies the KD (derivative) term 
to the motor encoder.  This method results in a stable system. 

The dual loop method is activated with the instruction DV (Dual Velocity), where 

 DV       1,1,1,1 

activates the dual loop for the four axes and 

 DV       0,0,0,0 

disables the dual loop. 

Note that the dual loop compensation depends on the backlash magnitude, and in extreme cases will 
not stabilize the loop.  The proposed compensation procedure is to start with KP=0, KI=0 and to 
maximize the value of KD under the condition DV1.  Once KD is found, increase KP gradually to a 
maximum value, and finally, increase KI, if necessary. 

Sampled Dual Loop 
In this example, we consider a linear slide which is run by a rotary motor via a lead screw.  Since the 
lead screw has a backlash, it is necessary to use a linear encoder to monitor the position of the slide.  
For stability reasons, it is best to use a rotary encoder on the motor. 

Connect the rotary encoder to the A-axis and connect the linear encoder to the auxiliary encoder of A.  
Assume that the required motion distance is one inch, and that this corresponds to 40,000 counts of the 
rotary encoder and 10,000 counts of the linear encoder. 

The design approach is to drive the motor a distance, which corresponds to 40,000 rotary counts.  Once 
the motion is complete, the controller monitors the position of the linear encoder and performs position 
corrections. 

This is done by the following program. 
Instruction Interpretation 
#DUALOOP Label 
CE 0 Configure encoder 
DE0 Set initial value 
PR 40000 Main move 
BGA Start motion 
#CORRECT Correction loop 
AMA Wait for motion completion 
v1=10000-_DEA Find linear encoder error 
v2=-_TEA/4+v1 Compensate for motor error 
JP#END,@ABS[v2]<2 Exit if error is small 
PR v2*4 Correction move 
BGA Start correction 
JP#CORRECT Repeat 
#END  
EN  

Motion Smoothing  
The DMC-2x00 controller allows the smoothing of the velocity profile to reduce the mechanical 
vibration of the system.   



DMC-2X00 Chapter 6  Programming Motion   101  

Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum 
value.  The discontinuous acceleration results in jerk which causes vibration.  The smoothing of the 
acceleration profile leads to a continuous acceleration profile and reduces the mechanical shock and 
vibration. 

Using the IT and VT Commands: 

 
When operating with servo motors, motion smoothing can be accomplished with the IT and VT 
command.  These commands filter the acceleration and deceleration functions to produce a smooth 
velocity  profile.  The resulting velocity profile has continuous acceleration and results in reduced 
mechanical vibrations. 

The smoothing function is specified by the following commands: 
IT a,b,c,d Independent time constant 
VT n Vector time constant 

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and the command, 
VT, is used to smooth vector moves of the type VM and LM. 

The smoothing parameters, a,b,c,d and n are numbers between 0 and 1 and determine the degree of 
filtering.  The maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles.  
Smaller values of the smoothing parameters imply heavier filtering and smoother moves. 

The following example illustrates the effect of smoothing.  Fig. 6.9 shows the trapezoidal velocity 
profile and the modified acceleration and velocity. 

Note that the smoothing process results in longer motion time. 

Example 
 

Instruction Interpretation 
PR 20000 Position 
AC 100000 Acceleration 
DC 100000 Deceleration 
SP 5000 Speed 
IT .5 Filter for smoothing 
BG A Begin 



102  •  Chapter 6  Programming Motion DMC-2X00  

TIME

VELOCITY

TIME

ACCELERATION

TIME

ACCELERATION WITH
SMOOTHING

TIME

VELOCITY WITH
SMOOTHING

Figure 6.9 - Trapezoidal velocity and smooth velocity profiles 

Using the KS Command (Step Motor Smoothing): 

 
When operating with step motors, motion smoothing can be accomplished with the command, KS.  
The KS command smoothes the frequency of step motor pulses.  Similar to the commands, IT and VT, 
this produces a smooth velocity profile.   

The step motor smoothing is specified by the following command: 
KS a,b,c,d where a,b,c,d is an integer from 0.5 to 8 and represents the 

amount of smoothing 

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and the command, 
VT, is used to smooth vector moves of the type VM and LM. 

The smoothing parameters, a,b,c,d and n are numbers between 0.5 and 8 and determine the degree of 
filtering.  The minimum value of 0.5 implies no filtering, resulting in trapezoidal velocity profiles.  
Larger values of the smoothing parameters imply heavier filtering and smoother moves. 

Note that KS is valid only for step motors. 



DMC-2X00 Chapter 6  Programming Motion   103  

Homing 
The Find Edge (FE) and Home (HM) instructions may be used to home the motor to a mechanical 
reference.  This reference is connected to the Home input line. The HM command initializes the motor 
to the encoder index pulse in addition to the Home input.  The configure command (CN) is used to 
define the polarity of the home input. 

The Find Edge (FE) instruction is useful for initializing the motor to a home switch.  The home switch 
is connected to the Homing Input.  When the Find Edge command and Begin is used, the motor will 
accelerate up to the slew speed and slew until a transition is detected on the Homing line.  The motor 
will then decelerate to a stop.  A high deceleration value must be input before the find edge command 
is issued for the motor to decelerate rapidly after sensing the home switch.  The velocity profile 
generated is shown in Fig. 6.10. 

The Home (HM) command can be used to position the motor on the index pulse after the home switch 
is detected.  This allows for finer positioning on initialization.  The command sequence HM and BG 
causes the following sequence of events to occur. 

1. Upon begin, motor accelerates to the slew speed.  The direction of its motion is determined by 
the state of the homing input.  A zero (GND) will cause the motor to start in the forward 
direction; +5V will cause it to start in the reverse direction.  The CN command is used to 
define the polarity of the home input. 

2. Upon detecting the home switch changing state, the motor begins decelerating to a stop. 

3. The motor then traverses very slowly back until the home switch toggles again. 

4. The motor then traverses forward until the encoder index pulse is detected. 

5. The DMC-2x00 defines the home position (0) as the position at which the index was detected. 

Example 
Instruction Interpretation
#HOME Label
AC 1000000 Acceleration Rate
DC 1000000 Deceleration Rate
SP 5000 Speed for Home Search
HM A Home A
BG A Begin Motion
AM A After Complete
MG "AT HOME" Send Message
EN End
#EDGE Label
AC 2000000 Acceleration rate
DC 2000000 Deceleration rate
SP 8000 Speed
FE B Find edge command
BG B Begin motion
AM B After complete
MG "FOUND HOME" Send message
DP,0 Define position as 0
EN End



104  •  Chapter 6  Programming Motion DMC-2X00  

   

MOTION TOWARD   
INDEX   

    DIRECTION   

POSITION 

HOME SWITCH   _HMA=1 _HMX=0 

POSITION 

MOTION REVERSE   
TOWARD HOME   

    DIRECTION   

MOTION BEGINS   
TOWARD HOME   

    DIRECTION   

VELOCITY   

VELOCITY   

VELOCITY   

POSITION 

POSITION 

INDEX PULSES   

POSITION   

HOME SENSOR   

(1)   

(2)   

(3)   

 
Figure 6.10 - Motion intervals in the Home sequence 

 



DMC-2X00 Chapter 6  Programming Motion   105  

Command Summary - Homing Operation  
command Description 
FE ABCD Find Edge Routine.  This routine monitors the Home Input 

FI ABCD Find Index Routine - This routine monitors the Index Input 

HM ABCD Home Routine - This routine combines FE and FI as Described Above 

SC ABCD Stop Code 

TS ABCD Tell Status of Switches and Inputs 

Operand Summary - Homing Operation 
Operand Description 
_HMa Contains the value of the state of the Home Input 

_SCa Contains stop code 

_TSa Contains status of switches and inputs 

High Speed Position Capture (The Latch Function)  
Often it is desirable to capture the position precisely for registration applications.  The DMC-2x00 
provides a position latch feature.  This feature allows the position of the main or auxiliary encoders of 
A,B,C  or D to be captured when the latch input changes state.  This function can be setup such that the 
position is captured when the latch input goes high or low.  When the latch function is enabled for 
active low operation, the position will be captured within 12 microseconds.  When the latch function is 
enabled for active high operation, the position will be captured within 35 microseconds.   Each axis has 
one general input associated to the axis for position capture: 

Input Function Input Function 
IN1 A Axis Latch IN9 E Axis Latch 

IN2 B Axis Latch IN10 F Axis Latch 

IN3 C Axis Latch IN11 G Axis Latch 

IN4 D Axis Latch IN12 H Axis Latch 

The DMC-2x00 software commands, AL and RL, are used to arm the latch and report the latched 
position.  The steps to use the latch are as follows: 

1. Give the AL ABCD command to arm the latch for the main encoder and ALSASBSCSD for 
the auxiliary encoders. 

2. Test to see if the latch has occurred (Input goes low) by using the _AL A or B or C or D 
command.  Example, V1=_ALA returns the state of the A latch into V1.  V1 is 1 if the latch 
has not occurred. 

3. After the latch has occurred, read the captured position with the RL ABCD command or _RL 
ABCD. 

NOTE:  The latch must be re-armed after each latching event. 



106  •  Chapter 6  Programming Motion DMC-2X00  

Example 
 

Instruction Interpretation 
#LATCH Latch program 
JG,5000 Jog B 
BG B Begin motion on B axis 
AL B Arm Latch for B axis 
#WAIT #Wait label for loop 
JP #WAIT,_ALB=1 Jump to #Wait label if latch has not occurred 
Result=_RLB Set ‘Result’ equal to the reported position of y axis 
Result= Print result 
EN End 

 



DMC-2X00 Chapter 7 Application Programming   107  

Chapter 7 Application 
Programming 

Overview 
The DMC-2x00 provides a powerful programming language that allows users to customize the 
controller for their particular application.  Programs can be downloaded into the DMC-2x00 memory 
freeing the host computer for other tasks.  However, the host computer can send commands to the 
controller at any time, even while a program is being executed.  Only ASCII commands can be used 
for application programming. 

In addition to standard motion commands, the DMC-2x00 provides commands that allow the DMC-
2x00 to make its own decisions.  These commands include conditional jumps, event triggers and 
subroutines.  For example, the command JP#LOOP, n<10 causes a jump to the label #LOOP if the 
variable n is less than 10. 

For greater programming flexibility, the DMC-2x00 provides user-defined variables, arrays and 
arithmetic functions.  For example, with a cut-to-length operation, the length can be specified as a 
variable in a program which the operator can change as necessary. 

The following sections in this chapter discuss all aspects of creating applications programs.  The 
program memory size is 80 characters x 1000 lines. 

Using the DOS Editor to Enter Programs (DMC-2000 
only) 

The DMC-2000 has an internal editor which may be used to create and edit programs in the controller's 
memory.  The internal editor is opened by the command ED.  Note that the command ED will not open 
the internal editor if issued from Galil's Window based software - in this case, a Windows based editor 
will be automatically opened.  The Windows based editor provides much more functionality and ease-
of-use, therefore, the internal editor is most useful when using a simple terminal with the controller and 
a Windows based editor is not available. 

Once the ED command has been given, each program line is automatically numbered sequentially 
starting with 000.  If no parameter follows the ED command, the editor prompter will default to the last 
line of the last program in memory.  If desired, the user can edit a specific line number or label by 
specifying a line number or label following ED. 

 

NOTE:  ED command only accepts a parameter (such as #BEGIN) in DOS Window.  For general 
purposes, the editing features in this section are not applicable when not in DOS mode. 



108  •  Chapter 7 Application Programming DMC-2X00  

 
Instruction Interpretation 
:ED Puts Editor at end of last program 
:ED 5 Puts Editor at line 5 
:ED #BEGIN Puts Editor at label #BEGIN 

Line numbers appear as 000,001,002 and so on.  Program commands are entered following the line 
numbers.  Multiple commands may be given on a single line as long as the total number of characters 
doesn't exceed 80 characters per line. 

While in the Edit Mode, the programmer has access to special instructions for saving, inserting and 
deleting program lines.  These special instructions are listed below: 

Edit Mode Commands 
<RETURN> 

Typing the return key causes the current line of entered instructions to be saved.  The editor will 
automatically advance to the next line.  Thus, hitting a series of <RETURN> will cause the editor to 
advance a series of lines.  Note, changes on a program line will not be saved unless a <return> is given. 

<cntrl>P 

The <cntrl>P command moves the editor to the previous line. 

<cntrl>I 

The <cntrl>I command inserts a line above the current line.  For example, if the editor is at line 
number 2 and <cntrl>I is applied, a new line will be inserted between lines 1 and 2.  This new line will 
be labeled line 2.  The old line number 2 is renumbered as line 3. 

<cntrl>D 

The <cntrl>D command deletes the line currently being edited.  For example, if the editor is at line 
number 2 and <cntrl>D is applied, line 2 will be deleted.  The previous line number 3 is now 
renumbered as line number 2. 

<cntrl>Q 

The <cntrl>Q quits the editor mode.  In response, the DMC-2000 will return a colon. 

After the Edit session is over, the user may list the entered program using the LS command.  If no 
operand follows the LS command, the entire program will be listed.  The user can start listing at a 
specific line or label using the operand n.  A command and new line number or label following the 
start listing operand specifies the location at which listing is to stop. 

Example 
 

Instruction Interpretation 
:LS List entire program 
:LS 5 Begin listing at line 5 
:LS 5,9 List lines 5 thru 9 
:LS #A,9 List line label #A thru line 9 
:LS #A, #A +5 List line label #A and additional 5 lines 

NOTE:  Editor is not available for DMC-2100, however, any terminal may be used (i.e. Telnet) 



DMC-2X00 Chapter 7 Application Programming   109  

Program Format 
A DMC program consists of DMC-2x00 instructions combined to solve a machine control application.  
Action instructions, such as starting and stopping motion, are combined with Program Flow 
instructions to form the complete program.  Program Flow instructions evaluate real-time conditions, 
such as elapsed time or motion complete, and alter program flow accordingly. 

Each DMC-2x00 instruction in a program must be separated by a delimiter.  Valid delimiters are the 
semicolon (;) or carriage return.  The semicolon is used to separate multiple instructions on a single 
program line where the maximum number of instructions on a line is limited by 80 characters.  A 
carriage return enters the final command on a program line. 

Using Labels in Programs 
All DMC-2x00 programs must begin with a label and end with an End (EN) statement.  Labels start 
with the pound (#) sign followed by a maximum of seven characters.  The first character must be a 
letter; after that, numbers are permitted.  Spaces are not permitted. 

The maximum number of labels which may be defined is 510, for firmware 1.0c and higher. 

Valid labels 

 #BEGIN 

 #SQUARE 

 #X1 

 #BEGIN1 

Invalid labels 

 #1Square 

 #123 

Example 
 

Instruction Interpretation 
#START Beginning of the Program 
PR 10000,20000 Specify relative distances on A and B axes 
BG AB Begin Motion 
AM Wait for motion complete 
WT 2000 Wait 2 sec 
JP #START Jump to label START 
EN End of Program 

The above program moves A and B 10000 and 20000 units.  After the motion is complete, the motors 
rest for 2 seconds.  The cycle repeats indefinitely until the stop command is issued. 

Special Labels 
The DMC-2x00 has some special labels, which are used to define input interrupt subroutines, limit 
switch subroutines, error handling subroutines, and command error subroutines.  See section on Auto-
Start Routine 

The DMC-2x00 has a special label for automatic program execution.  A program which has been saved 
into the controller’s non-volatile memory can be automatically executed upon power up or reset by 



110  •  Chapter 7 Application Programming DMC-2X00  

beginning the program with the label #AUTO.  The program must be saved into non-volatile memory 
using the command, BP.  

Automatic Subroutines for Monitoring Conditions on page 122. 
#ININT Label for Input Interrupt subroutine 
#LIMSWI Label for Limit Switch subroutine 
#POSERR Label for excess Position Error subroutine 
#MCTIME Label for timeout on Motion Complete trip point 
#CMDERR Label for incorrect command subroutine 
#COMINT Label for communication interrupt on the aux. serial port 
#TCPERR Label for TCP/IP communication error (2100 and 2200 only) 

Commenting Programs 
There are two methods for commenting programs.  The first method uses the NO command and allows 
for programs to be embedded into Galil programs.  The second method used the REM statement and 
requires the use of Galil software. 

NO Command 
The DMC-2x00 provides a command, NO, for commenting programs.  This command allows the user 
to include up to 78 characters on a single line after the NO command and can be used to include 
comments from the programmer as in the following example: 

Instruction Interpretation 
#PATH Label 
NO 2-D CIRCULAR PATH Comment - No Operation 
VMAB Vector Mode 
NO VECTOR MOTION ON A AND B Comment - No Operation 
VS 10000 Vector Speed 
NO VECTOR SPEED IS 10000 Comment - No Operation 
VP -4000,0 Vector Position 
NO BOTTOM LINE Comment - No Operation 
CR 1500,270,-180 Circle Motion 
NO HALF CIRCLE MOTION Comment - No Operation 
VP 0,3000 Vector Position 
NO TOP LINE Comment - No Operation 
CR 1500,90,-180 Circle 
NO HALF CIRCLE MOTION Comment - No Operation 
VE Vector End 
NO END VECTOR SEQUENCE Comment - No Operation 
BGS Begin Sequence 
NO BEGIN SEQUENCE MOTION Comment - No Operation 
EN End of Program 
NO END OF PROGRAM Comment - No Operation 

NOTE: The NO command is an actual controller command.  Therefore, inclusion of the NO 
commands will require process time by the controller. 

HINT: Some users annotate their programs using the word “NOTE:”; everything after the “NO” is a 
comment. 



DMC-2X00 Chapter 7 Application Programming   111  

REM Command 
If you are using Galil software to communicate with the DMC-2x00 controller, you may also include 
REM statements.  ‘REM’ statements begin with the word ‘REM’ and may be followed by any 
comments which are on the same line.  The Galil terminal software will remove these statements when 
the program is downloaded to the controller.  For example: 

#PATH 
REM 2-D CIRCULAR PATH 
VMAB 
REM VECTOR MOTION ON A AND B 
VS 10000 
REM VECTOR SPEED IS 10000 
VP -4000,0 
REM BOTTOM LINE 
CR 1500,270,-180 
REM HALF CIRCLE MOTION 
VP 0,3000 
REM TOP LINE 
CR 1500,90,-180 
REM HALF CIRCLE MOTION 
VE 
REM END VECTOR SEQUENCE 
BGS 
REM BEGIN SEQUENCE MOTION 
EN 
REM END OF PROGRAM 

These REM statements will be removed when this program is downloaded to the controller. 

Executing Programs - Multitasking 
The DMC-2x00 can run up to 8 independent programs simultaneously.  These programs are called 
threads and are numbered 0 through 7, where 0 is the main thread. Multitasking is useful for executing 
independent operations such as PLC functions that occur independently of motion.   

The main thread differs from the others in the following ways: 

1.  Only the main thread, thread 0, may use the input command, IN. 

2.  When automatic subroutines are implemented for limit switches, position errors or command errors, 
they are executed in thread 0. 

To begin execution of the various programs, use the following instruction: 

 XQ #A, n 

Where n indicates the thread number.  To halt the execution of any thread, use the instruction 

 HX n 

where n is the thread number. 

Note that both the XQ and HX commands can be performed by an executing program. 

The example below produces a waveform on Output 1 independent of a move. 



112  •  Chapter 7 Application Programming DMC-2X00  

Instruction Interpretation 
#TASK1 Task1 label 
AT0 Initialize reference time 
CB1 Clear Output 1 
#LOOP1 Loop1 label 
AT 10 Wait 10 msec from reference time 
SB1 Set Output 1 
AT -40 Wait 40 msec from reference, then initialize reference 
CB1 Clear Output 1 
JP #LOOP1 Repeat Loop1 
#TASK2 Task2 label 
XQ #TASK1,1 Execute Task1 
#LOOP2 Loop2 label 
PR 1000 Define relative distance 
BGX Begin motion 
AMX After motion done 
WT 10 Wait 10 msec 
JP #LOOP2,@IN[2]=1 Repeat motion unless Input 2 is low 
HX Halt all tasks 

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the 
main thread (i.e. Thread 0).  #TASK1 is executed within TASK2. 

Debugging Programs 
The DMC-2x00 provides commands and operands which are useful in debugging application 
programs.   These commands include interrogation commands to monitor program execution, 
determine the state of the controller and the contents of the controllers program, array, and variable 
space.  Operands also contain important status information which can help to debug a program. 

Trace Commands ( DMC-2100/2200 only) 
The trace command causes the controller to send each line in a program to the host computer 
immediately prior to execution.  Tracing is enabled with the command, TR1.  TR0 turns the trace 
function off.   

NOTE: When the trace function is enabled, the line numbers as well as the command line will be 
displayed as each command line is executed. 

Data which is output from the controller is stored in the output UART.  The UART buffer can store up 
to 128 characters of information.  In normal operation, the controller places output into the FIFO 
buffer.  When the trace mode is enabled, the controller will send information to the UART buffer at a 
very high rate.  In general, the UART will become full because the hardware handshake line will halt 
serial data until the correct data is read.  When the UART becomes full, program execution will be 
delayed until it is cleared.  If the user wants to avoid this delay, the command CW,1 can be given.  
This command causes the controller to throw away the data which can not be placed into the FIFO.  In 
this case, the controller does not delay program execution. 



DMC-2X00 Chapter 7 Application Programming   113  

Error Code Command 
When there is a program error, the DMC-2x00 halts the program execution at the point where the error 
occurs.  To display the last line number of program execution, issue the command, MG _ED.  

The user can obtain information about the type of error condition that occurred by using the command, 
TC1.  This command reports back a number and a text message which describes the error condition.  
The command, TC0 or TC, will return the error code without the text message.  For more information 
about the command, TC, see the Command Reference. 

Stop Code Command 
The status of motion for each axis can be determined by using the stop code command, SC.  This can 
be useful when motion on an axis has stopped unexpectedly.  The command SC will return a number 
representing the motion status.  See the command reference for further information. 

RAM Memory Interrogation Commands 
For debugging the status of the program memory, array memory, or variable memory, the DMC-2x00 
has several useful commands.  The command, DM ?, will return the number of array elements 
currently available.  The command, DA ?, will return the number of arrays which can be currently 
defined.  For example, a standard DMC-2x10 will have a maximum of 8000 array elements in up to 30 
arrays.  If an array of 100 elements is defined, the command DM ? will return the value 7900 and the 
command DA ? will return 29. 

To list the contents of the variable space, use the interrogation command LV (List Variables). To list 
the contents of array space, use the interrogation command, LA (List Arrays).  To list the contents of 
the Program space, use the interrogation command, LS (List).  To list the application program labels 
only, use the interrogation command, LL (List Labels). 

Operands  
In general, all operands provide information which may be useful in debugging an application 
program.  Below is a list of operands which are particularly valuable for program debugging.  To 
display the value of an operand, the message command may be used.  For example, since the operand, 
_ED contains the last line of program execution, the command MG _ED will display this line number. 

_ED contains the last line of program execution.  Useful to determine where program stopped. 

_DL contains the number of available labels. 

_UL contains the number of available variables. 

_DA contains the number of available arrays. 

_DM contains the number of available array elements. 

_AB contains the state of the Abort Input 

_FLa contains the state of the forward limit switch for the 'a' axis 

_RLa contains the state of the reverse limit switch for the 'a' axis 

Example 
The following program has an error.  It attempts to specify a relative movement while the A-axis is 
already in motion.  When the program is executed, the controller stops at line 003.  The user can then 
query the controller using the command, TC1.  The controller responds with the corresponding 
explanation: 



114  •  Chapter 7 Application Programming DMC-2X00  

Instruction Interpretation 
:ED Edit Mode 
000 #A Program Label 
001 PR1000 Position Relative 1000 
002 BGA Begin 
003 PR5000 Position Relative 5000 
004 EN End 
<cntrl> Q Quit Edit Mode 
:XQ #A Execute #A 
?003 PR5000 Error on Line 3 
:TC1 Tell Error Code 
?7 Command not valid while running. Command not valid while running 
:ED 3 Edit Line 3 
003 AMX;PR5000;BGA Add After Motion Done 
<cntrl> Q Quit Edit Mode 
:XQ #A Execute #A 

Program Flow Commands 
The DMC-2x00 provides instructions to control program flow.  The DMC-2x00 program sequencer 
normally executes program instructions sequentially.  The program flow can be altered with the use of 
event triggers, trippoints, and conditional jump statements. 

Event Triggers & Trippoints 
To function independently from the host computer, the DMC-2x00 can be programmed to make 
decisions based on the occurrence of an event.  Such events include waiting for motion to be complete, 
waiting for a specified amount of time to elapse, or waiting for an input to change logic levels. 

The DMC-2x00 provides several event triggers that cause the program sequencer to halt until the 
specified event occurs.  Normally, a program is automatically executed sequentially one line at a time.  
When an event trigger instruction is decoded, however, the actual program sequence is halted.  The 
program sequence does not continue until the event trigger is "tripped".  For example, the motion 
complete trigger can be used to separate two move sequences in a program.  The commands for the 
second move sequence will not be executed until the motion is complete on the first motion sequence.  
In this way, the DMC-2x00 can make decisions based on its own status or external events without 
intervention from a host computer. 

 

NOTE:  It is not recommended to send trip point commands (e.g. AM) from the PC to a  DMC-
2100/2200.  The buffer becomes filled easily when using event triggers which would halt 
communications between the host and the controller. 



DMC-2X00 Chapter 7 Application Programming   115  

DMC-2x00 Event Triggers 
 

Command Function 

AM A B C D E FG H or S Halts program execution until motion is complete on 
the specified axes or motion sequence(s).  AM with no 
parameter tests for motion complete on all axes.  This 
command is useful for separating motion sequences in 
a program. 

AD A or B or C or D or E or F or G or H 
 

Halts program execution until position command has 
reached the specified relative distance from the start of 
the move.  Only one axis may be specified at a time. 

AR A or B or C or D or E or F or G or H 
 

Halts program execution until after specified distance 
from the last AR or AD command has elapsed.  Only 
one axis may be specified at a time. 

AP A or B or C or D or E or F or G or H Halts program execution until after absolute position 
occurs.  Only one axis may be specified at a time. 

MF A or B or C or D or E or F or G or H 
 

Halt program execution until after forward motion 
reached absolute position.  Only one axis may be 
specified.  If position is already past the point, then 
MF will trip immediately.  Will function on geared 
axis or aux. inputs. 

MR A or B or C or D or E or F or G or H 
 

Halt program execution until after reverse motion 
reached absolute position.  Only one axis may be 
specified.  If position is already past the point, then 
MR will trip immediately.  Will function on geared 
axis or aux. inputs. 

MC A or B or C or D or E or F or G or H 
 

Halt program execution until after the motion profile 
has been completed and the encoder has  entered or 
passed the specified position.  TW  A,B,C,D sets 
timeout to declare an error if not  in position.  If 
timeout occurs, then the trip point will clear and the 
stop code will be  set to 99.  An application program 
will jump to label #MCTIME. 

AI +/- n Halts program execution until after specified input is 
at specified logic level.  n specifies  input line.  
Positive is high logic level, negative is low level.  n=1 
through 8 for DMC-2x10, 2x20, 2x30, 2x40.    n=1 
through 16 for DMC-2x50, 2x60, 2x70, 2x80.   n=17 
through 80 for DMC-2xx0.   

AS A B C D E F G H Halts program execution until specified axis has 
reached its slew speed. 

AT +/-n Halts program execution until n msec from reference 
time.  AT 0 sets reference.  AT n waits n msec from 
reference.  AT -n waits n msec from reference and sets 
new reference after elapsed time. 

AV n Halts program execution until specified distance along 
a coordinated path has occurred. 

WT n Halts program execution until specified time in msec 
has elapsed. 



116  •  Chapter 7 Application Programming DMC-2X00  

Example- Multiple Move Sequence 
The AM trip point is used to separate the two PR moves. If AM is not used, the controller returns a ? 
for the second PR command because a new PR cannot be given until motion is complete. 

Instruction Interpretation 
#TWOMOVE Label 
PR 2000 Position Command 
BGA Begin Motion 
AMA Wait for Motion Complete 
PR 4000 Next Position Move 
BGA Begin 2nd move 
EN End program 

Example- Set Output after Distance 
Set output bit 1 after a distance of 1000 counts from the start of the move.  The accuracy of the trip 
point is the speed multiplied by the sample period. 

Instruction Interpretation 
#SETBIT Label 
SP 10000 Speed is 10000 
PA 20000 Specify Absolute position 
BGA Begin motion 
AD 1000 Wait until 1000 counts 
SB1 Set output bit 1 
EN End program 

Example- Repetitive Position Trigger 
To set the output bit every 10000 counts during a move, the AR  is used as shown in the next example. 

Instruction Interpretation 
#TRIP Label 
JG 50000 Specify Jog Speed 
BGA;n=0 Begin Motion 
#REPEAT # Repeat Loop 
AR 10000 Wait 10000 counts 
TPA Tell Position 
SB1 Set output 1 
WT50 Wait 50 msec 
CB1 Clear output 1 
n=n+1 Increment counter 
JP #REPEAT,n<5 Repeat 5 times 
STA Stop 
EN End 

Example - Start Motion on Input 
This example waits for input 1 to go low and then starts motion.   



DMC-2X00 Chapter 7 Application Programming   117  

NOTE:  The AI command actually halts execution of the program until the input occurs.  If you do not 
want to halt the program sequences, you can use the Input Interrupt function (II) or use a conditional 
jump on an input, such as JP #GO,@IN[1] =1. 

 
Instruction Interpretation 
#INPUT Program Label 
AI-1 Wait for input 1 low 
PR 10000 Position command 
BGA Begin motion 
EN End program 

Example - Set Output when At Speed 
Instruction Interpretation 
#ATSPEED Program Label 
JG 50000 Specify jog speed 
AC 10000 Acceleration rate 
BGA Begin motion 
ASA Wait for at slew speed 50000 
SB1 Set output 1 
 EN End program 

Example - Change Speed along Vector Path 
The following program changes the  or vector speed at the specified distance along the vector.  The 
vector distance is measured from the start of the move or from the last AV command. 

Instruction Interpretation 
#VECTOR Label 
VMAB;VS 5000 Coordinated path 
VP 10000,20000 Vector position 
VP 20000,30000 Vector position 
VE End vector 
BGS Begin sequence 
AV 5000 After vector distance 
VS 1000 Reduce speed 
EN End 

 



118  •  Chapter 7 Application Programming DMC-2X00  

Example - Multiple Move with Wait 
This example makes multiple relative distance moves by waiting for each to be complete before 
executing new moves. 

 
Instruction Interpretation 
#MOVES Label 
PR 12000 Distance 
SP 20000 Speed 
AC 100000 Acceleration 
BGA Start Motion 
AD 10000 Wait a distance of 10,000 counts 
SP 5000 New Speed 
AMA Wait until motion is completed 
WT 200 Wait 200 ms 
PR -10000 New Position 
SP 30000 New Speed 
AC 150000 New Acceleration 
BGA Start Motion 
EN End 

Example- Define Output Waveform Using AT 
The following program causes Output 1 to be high for 10 msec and low for 40 msec.  The cycle repeats 
every 50 msec. 

Instruction Interpretation 
#OUTPUT Program label 
AT0 Initialize time reference 
SB1 Set Output 1 
#LOOP Loop 
AT 10 After 10 msec from reference, 
CB1 Clear Output 1 
AT -40 Wait 40 msec from reference and reset reference 
SB1 Set Output 1 
JP #LOOP Loop 
EN  

Conditional Jumps 
The DMC-2x00 provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions 
for branching to a new program location based on a specified condition. The conditional jump 
determines if a condition is satisfied and then branches to a new location or subroutine.  Unlike event 
triggers, the conditional jump instruction does not halt the program sequence.  Conditional jumps are 
useful for testing events in real-time.  They allow the DMC-2x00 to make decisions without a host 
computer.  For example, the DMC-2x00 can decide between two motion profiles based on the state of 
an input line.  



DMC-2X00 Chapter 7 Application Programming   119  

Command Format -  JP and JS  
FORMAT: DESCRIPTION 
JS destination, logical condition Jump to subroutine if logical condition is satisfied 

JP destination, logical condition Jump to location if logical condition is satisfied 

The destination is a program line number or label where the program sequencer will jump if the 
specified condition is satisfied.  Note that the line number of the first line of program memory is 0.  
The comma designates "IF".  The logical condition tests two operands with logical operators.   

Logical operators: 
OPERATOR DESCRIPTION 

< less than 

> greater than 

= equal to 

<= less than or equal to 

>= greater than or equal to 

<> not equal 

Conditional Statements 
The conditional statement is satisfied if it evaluates to any value other than zero. The conditional 
statement can be any valid DMC-2x00 numeric operand, including variables, array elements, numeric 
values, functions, keywords, and arithmetic expressions.  If no conditional statement is given, the jump 
will always occur. 

 
Number V1=6 
Numeric Expression V1=V7*6 
 @ABS[V1]>10 
Array Element V1<Count[2] 
Variable V1<V2 
Internal Variable _TPA=0 
 _TVA>500 
I/O V1>@AN[2] 
 @IN[1]=0 

Multiple Conditional Statements 
The DMC-2x00 will accept multiple conditions in a single jump statement.  The conditional statements 
are combined in pairs using the operands “&” and “|”.  The “&” operand between any two conditions, 
requires that both statements must be true for the combined statement to be true.  The “|” operand 
between any two conditions, requires that only one statement be true for the combined statement to be 
true.   

NOTE: Each condition must be placed in parentheses for proper evaluation by the controller.  In 
addition, the DMC-2x00 executes operations from left to right.   For further information on 
Mathematical Expressions and the bit-wise operators ‘&’ and ‘|’, see pg 128. 

For example, using variables named V1, V2, V3 and V4: 

JP #TEST, (V1<V2) & (V3<V4) 



120  •  Chapter 7 Application Programming DMC-2X00  

In this example, this statement will cause the program to jump to the label #TEST if V1 is less than V2 
and V3 is less than V4.  To illustrate this further, consider this same example with an additional 
condition: 

JP #TEST, ((V1<V2) & (V3<V4)) | (V5<V6) 

This statement will cause the program to jump to the label #TEST under two conditions;  1. If V1 is 
less than V2 and V3 is less than V4.  OR  2. If V5 is less than V6. 

Examples 
If the condition for the JP command is satisfied, the controller branches to the specified label or line 
number and continues executing commands from this point.  If the condition is not satisfied, the 
controller continues to execute the next commands in sequence. 

 
Instruction Interpretation 
JP #LOOP,count<10 Jump to #LOOP if the variable, count, is less than 10 
JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high.  After 

the subroutine MOVE2 is executed, the program sequencer 
returns to the main program location where the subroutine was 
called. 

JP #BLUE,@ABS[v2]>2 Jump to #BLUE if the absolute value of variable, v2, is greater 
than 2 

JP #C,v1*v7<=v8*v2 Jump to #C if the value of v1 times v7 is less than or equal to the 
value of v8*v2 

JP#A Jump to #A 

 

Move the A motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec 
between moves. 

Instruction Interpretation 
#BEGIN Begin Program 
count=10 Initialize loop counter 
#LOOP Begin loop 
PA 1000 Position absolute 1000 
BGA Begin move 
AMA Wait for motion complete 
WT 100 Wait 100 msec 
PA 0 Position absolute 0 
BGA Begin move 
AMA Wait for motion complete 
WT 100 Wait 100 msec 
count = count -1 Decrement loop counter 
JP #LOOP, count >0 Test for 10 times thru loop 
 EN End Program 

If, Else, and Endif 
The DMC-2x00 provides a structured approach to conditional statements using IF, ELSE and ENDIF 
commands.   



DMC-2X00 Chapter 7 Application Programming   121  

Using the IF and ENDIF Commands 
An IF conditional statement is formed by the combination of an IF and ENDIF command.  The IF 
command has as its arguments one or more conditional statements.  If the conditional statement(s) 
evaluates true, the command interpreter will continue executing commands which follow the IF 
command.  If the conditional statement evaluates false, the controller will ignore commands until the 
associated ENDIF command is executed OR an ELSE command occurs in the program (see discussion 
of ELSE command below). 

NOTE: An ENDIF command must always be executed for every IF command that has been executed.  
It is recommended that the user not include jump commands inside IF conditional statements since this 
causes redirection of command execution.  In this case, the command interpreter may not execute an 
ENDIF command.  

Using the ELSE Command 
The ELSE command is an optional part of an IF conditional statement and allows for the execution of 
command only when the argument of the IF command evaluates False.   The ELSE command must 
occur after an IF command and has no arguments.  If the argument of the IF command evaluates false, 
the controller will skip commands until the ELSE command.  If the argument for the IF command 
evaluates true, the controller will execute the commands between the IF and ELSE command.  

Nesting IF Conditional Statements 
The DMC-2x00 allows for IF conditional statements to be included within other IF conditional 
statements.  This technique is known as 'nesting' and the DMC-2x00 allows  up to 255 IF conditional 
statements to be nested.  This is a very powerful technique allowing the user to specify a variety of 
different cases for branching. 

Command Format -  IF, ELSE and ENDIF 
 

Format: description 
IF conditional statement(s) Execute commands proceeding IF command (up to ELSE command) if 

conditional statement(s) is true, otherwise continue executing at ENDIF 
command or optional ELSE command. 

ELSE  Optional command.  Allows for commands to be executed when argument 
of IF command evaluates not true.  Can only be used with IF command. 

ENDIF Command to end IF conditional statement.  Program must have an ENDIF 
command for every IF command. 

 
Instruction Interpretation 
#TEST Begin Main Program "TEST" 
II,,3 Enable interrupts on input 1 and input 2 
MG "WAITING FOR INPUT 1, INPUT 2" Output message 
#LOOP Label to be used for endless loop 
JP #LOOP Endless loop 
EN End of main program 
#ININT Input Interrupt Subroutine 
IF (@IN[1]=0) IF conditional statement based on input 1 
IF (@IN[2]=0) 2nd IF executed if 1st IF conditional true 
MG "INPUT 1 AND INPUT 2 ARE ACTIVE" Message executed if 2nd IF is true 



122  •  Chapter 7 Application Programming DMC-2X00  

ELSE ELSE command for 2nd IF statement 
MG "ONLY INPUT 1 IS ACTIVE Message executed if 2nd IF is false 
ENDIF End of 2nd conditional statement 
ELSE ELSE command for 1st IF statement 
MG"ONLY INPUT 2 IS ACTIVE" Message executed if 1st IF statement 
ENDIF End of 1st conditional statement 
#WAIT Label to be used for a loop 
JP#WAIT,(@IN[1]=0) | (@IN[2]=0) Loop until Input 1& 2 are not active 
RI0 End Input Interrupt Routine without restoring 

trippoints 

Subroutines 
A subroutine is a group of instructions beginning with a label and ending with an End command (EN).  
Subroutines are called from the main program with the jump subroutine instruction JS, followed by a 
label or line number, and conditional statement.  Up to 8 subroutines can be nested.  After the 
subroutine is executed, the program sequencer returns to the program location where the subroutine 
was called unless the subroutine stack is manipulated as described in the following section. 

An example of a subroutine to draw a square of 500 counts per side is given below.  The square is 
drawn at vector position 1000, 1000. 

 

Stack Manipulation 
It is possible to manipulate the subroutine stack by using the ZS command.  Every time a JS 
instruction, interrupt or automatic routine (such as #POSERR or #LIMSWI) is executed, the subroutine 
stack is incremented by 1.  Normally the stack is restored with an EN instruction.  Occasionally it is 
desirable not to return back to the program line where the subroutine or interrupt was called.  The ZS1 
command clears 1 level of the stack.  This allows the program sequencer to continue to the next line.  
The ZS0 command resets the stack to its initial value.  For example, if a limit occurs and the #LIMSWI 
routine is executed, it is often desirable to restart the program sequence instead of returning to the 
location where the limit occurred.  To do this, give a ZS command at the end of the #LIMSWI routine. 

Auto-Start Routine 
The DMC-2x00 has a special label for automatic program execution.  A program which has been saved 
into the controller’s non-volatile memory can be automatically executed upon power up or reset by 

Instruction Interpretation 
#M Begin Main Program 
CB1 Clear Output Bit 1 (pick up pen) 
VP 1000,1000;LE;BGS Define vector position; move pen 
AMS Wait for after motion trip point 
SB1 Set Output Bit 1 (put down pen) 
JS #SQUARE;CB1 Jump to SQUARE subroutine 
EN End Main Program 
# SQUARE SQUARE subroutine 
v1=500;JS #L Define length of side 
v1=-v1;JS #L Switch direction 
EN End subroutine 
#L;PR v1,v1;BGA Define A,B; Begin A 
AMA;BGB;AMB After motion on A, Begin B 
EN End subroutine 



DMC-2X00 Chapter 7 Application Programming   123  

beginning the program with the label #AUTO.  The program must be saved into non-volatile memory 
using the command, BP.  

Automatic Subroutines for Monitoring Conditions 
Often it is desirable to monitor certain conditions continuously without tying up the host or DMC-2x00 
program sequences.  The DMC-2x00 can monitor several important conditions in the background.  
These conditions include checking for the occurrence of a limit switch, a defined input, position error, 
or a command error.  Automatic monitoring is enabled by inserting a special, predefined label in the 
applications program.  The pre-defined labels are: 

SUBROUTINE DESCRIPTION 
#LIMSWI Limit switch on any axis goes low  

#ININT Input specified by II goes low  

#POSERR Position error exceeds limit specified by ER  

#MCTIME Motion Complete timeout occurred.  Timeout period set by TW command  

#CMDERR Bad command given 

#COMINT (DMC-2000 only) Communication Interrupt Routine  

#TCPERR TCP/IP communication error (2100 and 2200 only) 

For example, the #POSERR subroutine will automatically be executed when any axis exceeds its 
position error limit.  The commands in the #POSERR subroutine could decode which axis is in error 
and take the appropriate action.  In another example, the #ININT label could be used to designate an 
input interrupt subroutine.  When the specified input occurs, the program will be executed 
automatically. 
NOTE:  An application program must be running for automatic monitoring to function. 

Example - Limit Switch: 
This program prints a message upon the occurrence of a limit switch.  Note, for the #LIMSWI routine 
to function, the DMC-2x00 must be executing an applications program from memory.  This can be a 
very simple program that does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN.  
Motion commands, such as JG 5000 can still be sent from the PC even while the "dummy" 
applications program is being executed. 

Instruction Interpretation 
:ED Edit Mode 
000 #LOOP Dummy Program 
001 JP #LOOP;EN Jump to Loop 
002 #LIMSWI Limit Switch Label 
003 MG "LIMIT OCCURRED" Print Message 
004 RE Return to main program 
<control> Q Quit Edit Mode 
:XQ #LOOP Execute Dummy Program 
:JG 5000 Jog 
:BGA Begin Motion 

 



124  •  Chapter 7 Application Programming DMC-2X00  

Now, when a forward limit switch occurs on the A axis, the #LIMSWI subroutine will be executed 

Notes regarding the #LIMSWI Routine: 

1)  The RE command is used to return from the #LIMSWI subroutine. 

2)  The #LIMSWI subroutine will be re-executed if the limit switch remains active. 

The #LIMSWI routine is only executed when the motor is being commanded to move. 

Example - Position Error 
Instruction Interpretation 
:ED Edit Mode 
000 #LOOP Dummy Program 
001 JP #LOOP;EN Loop 
002 #POSERR Position Error Routine 
003 v1=_TEA Read Position Error 
004 MG "EXCESS POSITION ERROR" Print Message 
005 MG "ERROR=",v1= Print Error 
006 RE Return from Error 
<control> Q Quit Edit Mode 
:XQ #LOOP Execute Dummy Program 
:JG 100000 Jog at High Speed 
:BGX Begin Motion 

 

 

Example - Input Interrupt 
Instruction Interpretation 
#A Label 
II1 Input Interrupt on 1 
JG 30000,,,60000 Jog 
BGAD Begin Motion 
#LOOP;JP#LOOP;EN Loop 
#ININT Input Interrupt 
STAD;AM Stop Motion 
#TEST;JP #TEST, @IN[1]=0 Test for Input 1 still low 
JG 30000,,,6000 Restore Velocities 
BGAD Begin motion 
RI0 Return from interrupt routine to Main Program and do not re-

enable trippoints 

 
 



DMC-2X00 Chapter 7 Application Programming   125  

Example - Motion Complete Timeout 
Instruction Interpretation 
#BEGIN Begin main program 
TW 1000 Set the time out to 1000 ms 
PA 10000 Position Absolute command 
BGA Begin motion 
MCA Motion Complete trip point 
EN End main program 
#MCTIME Motion Complete Subroutine 
MG “A fell short” Send out a message 
EN End subroutine 

This simple program will issue the message “A fell short” if the A axis does not reach the commanded 
position within 1 second of the end of the profiled move. 

Example - Command Error 
Instruction Interpretation 
#BEGIN Begin main program 
IN "ENTER SPEED", speed Prompt for speed 
JG speed;BGA Begin motion 
JP #BEGIN Repeat 
EN End main program 
#CMDERR Command error utility 
JP#DONE,_ED<>2 Check if error on line 2 
JP#DONE,_TC<>6 Check if out of range 
MG "SPEED TOO HIGH" Send message 
MG "TRY AGAIN" Send message 
ZS1 Adjust stack 
JP #BEGIN Return to main program 
#DONE End program if other error 
ZS0 Zero stack 
EN End program 

The above program prompts the operator to enter a jog speed.  If the operator enters a number out of 
range (greater than 8 million), the #CMDERR routine will be executed prompting the operator to enter 
a new number. 

In multitasking applications, there is an alternate method for handling command errors from different 
threads.  Using the XQ command along with the special operands described below allows the 
controller to either skip or retry invalid commands. 

 
OPERAND FUNCTION 
_ED1 Returns the number of the thread that generated an error 

_ED2 Retry failed command (operand contains the location of the failed command) 

_ED3 Skip failed command (operand contains the location of the command after the failed 
command) 

 



126  •  Chapter 7 Application Programming DMC-2X00  

The operands are used with the XQ command in the following format: 

 XQ _ED2 (or _ED3),_ED1,1  

Where the “,1” at the end of the command line indicates a restart; therefore, the existing program stack 
will not be removed when the above format executes. 

The following example shows an error correction routine which uses the operands. 

Example - Command Error  w/Multitasking 
Instruction Interpretation 

#A   Begin thread 0 (continuous loop) 
JP#A  
EN    End of thread 0 
#B    Begin thread 1 
n=-1    Create new variable  
KP n    Set KP to value of N, an invalid value 
TY    Issue invalid command 
EN    End of thread 1 
#CMDERR   Begin command error subroutine 
IF (_TC=6)   If error is out of range (KP -1) 
N=1    Set N to a valid number 
XQ _ED2,_ED1,1  Retry KP N command 
ENDIF  
IF (_TC=1)   If error is invalid command (TY) 
XQ _ED3,_ED1,1  Skip invalid command  
ENDIF  
EN    End of command error routine 

Example - Communication Interrupt 
A DMC-2x10 is used to move the A axis back and forth from 0 to 10000.  This motion can be paused, 
resumed and stopped via input from an auxiliary port terminal. 

Instruction Interpretation 
#BEGIN Label for beginning of program 
CC 9600,0,0,0 Setup communication configuration for auxiliary serial 

port 
CI 2 Setup communication interrupt for auxiliary serial port 
MG {P2}"Type 0 to stop motion" Message out of auxiliary port 
MG {P2}"Type 1 to pause motion" Message out of auxiliary port 
MG {P2}"Type 2 to resume motion" Message out of auxiliary port 
rate=2000 Variable to remember speed 
SPA=rate Set speed of A axis motion 
#LOOP Label for Loop 
PAA=10000 Move to absolute position 10000 
BGA Begin Motion on A axis 
AMA Wait for motion to be complete 
PAA=0 Move to absolute position 0 



DMC-2X00 Chapter 7 Application Programming   127  

BGA Begin Motion on A axis 
AMA Wait for motion to be complete 
JP #LOOP Continually loop to make back and forth motion 
EN End main program 
#COMINT Interrupt Routine 
JP #STOP,P2CH="0" Check for S (stop motion) 
JP #PAUSE,P2CH="1" Check for P (pause motion) 
JP #RESUME,P2CH="2" Check for R (resume motion) 
EN1,1 Do nothing 
#STOP Routine for stopping motion 
STA;ZS;EN Stop motion on A axis; Zero program stack; End 

Program 
#PAUSE Routine for pausing motion 
RATE=_SPA Save current speed setting of A axis motion 
SPA=0 Set speed of A axis to zero (allows for pause) 
EN1,1 Re-enable trip-point and communication interrupt 
#RESUME Routine for resuming motion 
SPA=RATE Set speed on A axis to original speed 
EN1,1 Re-enable trip-point and communication interrupt 

For additional information, see section on page. 

Example – Ethernet Communication Error 
This simple program executes in the DMC-2100/2200 and indicates (via the serial port) when a 
communication handle fails.  By monitoring the serial port, the user can re-establish communication if 
needed.  

Instruction Interpretation 

#LOOP Simple program loop 

JP#LOOP  

EN  

#TCPERR Ethernet communication error auto routine 

MG {P1}_IA4 Send message to serial port indicating which handle 
did not receive proper acknowledgment. 

RE  

 



128  •  Chapter 7 Application Programming DMC-2X00  

 

Mathematical and Functional Expressions 

Mathematical Operators 
For manipulation of data, the DMC-2x00 provides the use of the following mathematical operators: 

Operator Function 
+ Addition 

- Subtraction 

* Multiplication 

/ Division 

& Logical And (Bit-wise) 

| Logical Or (On some computers, a solid vertical line appears as a broken line) 

() Parenthesis 

The numeric range for addition, subtraction and multiplication operations is +/-2,147,483,647.9999.  
The precision for division is 1/65,000. 

Mathematical operations are executed from left to right.  Calculations within parentheses have 
precedence. 

speed=7.5*v1/2 The variable, speed, is equal to 7.5 multiplied by v1 and 
divided by 2 

count= count +2 The variable, count, is equal to the current value plus 2. 
result=_TPA-(@COS[45]*40) Puts the position of A - 28.28 in result.  40 * cosine of 45° 

is 28.28 
temp=@IN[1]&@IN[2] temp is equal to 1 only if Input 1 and Input 2 are high 

Bit-Wise Operators 
The mathematical operators & and | are bit-wise operators.  The operator, &, is a Logical And.  The 
operator, |, is a Logical Or.  These operators allow for bit-wise operations on any valid DMC-2x00 
numeric operand, including variables, array elements, numeric values, functions, keywords and 
arithmetic expressions.  The bit-wise operators may also be used with strings.  This is useful for 
separating characters from an input string.  When using the input command for string input, the input 
variable will hold up to 6 characters.  These characters are combined into a single value which is 
represented as 32 bits of integer and 16 bits of fraction.  Each ASCII character is represented as one 
byte (8 bits), therefore the input variable can hold up to six characters.  The first character of the string 
will be placed in the top byte of the variable and the last character will be placed in the lowest 
significant byte of the fraction.  The characters can be individually separated by using bit-wise 
operations as illustrated in the following example: 

 
Instruction Interpretation 

#TEST Begin main program 
IN "ENTER",len{S6} Input character string of up to 6 characters into 

variable ‘len’ 
flen=@FRAC[len] Define variable ‘flen’ as fractional part of variable 

‘len’ 



DMC-2X00 Chapter 7 Application Programming   129  

flen=$10000* flen Shift flen by 32 bits (IE - convert fraction, flen, to 
integer) 

len1=( flen &$00FF) Mask top byte of flen and set this value to variable 
‘len1’ 

len2=( flen &$FF00)/$100 Let variable, ‘len2’ = top byte of flen 
len3= len &$000000FF Let variable, ‘len3’ = bottom byte of len 
len4=( len &$0000FF00)/$100 Let variable, ‘len4’ = second byte of len 
len5=( len &$00FF0000)/$10000 Let variable, ‘len5’ = third byte of len 
len6=( len &$FF000000)/$1000000 Let variable, ‘len6’ = fourth byte of len 
MG len6 {S4} Display ‘len6’ as string message of up to 4 chars 
MG len5 {S4} Display ‘len5’ as string message of up to 4 chars 
MG len4 {S4} Display ‘len4’ as string message of up to 4 chars 
MG len3 {S4} Display ‘len3’ as string message of up to 4 chars 
MG len2 {S4} Display ‘len2’ as string message of up to 4 chars 
MG len1 {S4} Display ‘len1’ as string message of up to 4 chars 
EN  

This program will accept a string input of up to 6 characters, parse each character, and then display 
each character.  Notice also that the values used for masking are represented in hexadecimal (as 
denoted by the preceding ‘$’).  For more information, see section Sending Messages. 

To illustrate further, if the user types in the string “TESTME” at the input prompt, the controller will 
respond with the following: 

 
T Response from command MG len6 {S4} 
E Response from command MG len5 {S4} 
S Response from command MG len4 {S4} 
T Response from command MG len3 {S4} 
M Response from command MG len2 {S4} 
E Response from command MG len1 {S4} 

 



130  •  Chapter 7 Application Programming DMC-2X00  

 Functions 
FUNCTION DESCRIPTION 
@SIN[n] Sine of n (n in degrees, resolution of 1/64000 degrees, max +/- 4 billion) 

@COS[n] Cosine of n (n in degrees, resolution of 1/64000 degrees, max +/- 4 billion) 

@TAN[n] Tangent of n (n in degrees, resolution of 1/64000 degrees, max ±4 billion) 

@ASIN*[n] Arc Sine of n, between -90° and +90°.   Angle resolution in 1/64000 degrees. 

@ACOS* [n} Arc Cosine of n, between 0 and 180°.   Angle resolution in 1/64000 degrees. 

@ATAN* [n] Arc Tangent of n, between -90° and +90°.  Angle resolution in 1/64000 degrees  

@COM[n] 1’s Complement of n 

@ABS[n] Absolute value of n 

@FRAC[n] Fraction portion of n 

@INT[n] Integer portion of n 

@RND[n] Round of n (Rounds up if the fractional part of n is .5 or greater) 

@SQR[n] Square root of n (Accuracy is +/-.0001) 

@IN[n] Return digital input at general input n (where n starts at 1) 

@OUT[n] Return digital output at general output n (where n starts at 1) 

@AN[n] Return analog input at general analog in n (where n starts at 1) 

* Note that these functions are multi-valued.   An application program may be used to find the correct 
band. 

Functions may be combined with mathematical expressions.  The order of execution of mathematical 
expressions is from left to right and can be over-ridden by using parentheses. 

 
Instruction Interpretation 
v1=@ABS[v7] The variable, v1, is equal to the absolute value of variable v7. 
v2=5*@SIN[pos] The variable, v2, is equal to five times the sine of the variable, 

pos. 
v3=@IN[1] The variable, v3, is equal to the digital value of input 1. 
v4=2*(5+@AN[5]) The variable, v4, is equal to the value of analog input 5 plus 5, 

then multiplied by 2. 

Variables 
For applications that require a parameter that is variable, the DMC-2x00 provides 254 variables.  
These variables can be numbers or strings.  A program can be written in which certain parameters, 
such as position or speed, are defined as variables.  The variables can later be assigned by the operator 
or determined by program calculations.  For example, a cut-to-length application may require that a cut 
length be variable. 

 
Instruction Interpretation 
PR posa Assigns variable posa to PR command 
JG rpmb*70 Assigns variable rpmb multiplied by 70 to JG command. 



DMC-2X00 Chapter 7 Application Programming   131  

Programmable Variables 
The DMC-2x00 allows the user to create up to 254 variables.  Each variable is defines by a name 
which can be up to eight characters.  The name must start with an alphabetic character; however, 
numbers are permitted in the rest of the name.  Spaces are not permitted.  Variable can be upper or 
lowercase, or any combination.  Variables are case sensitive; SPEEDC ≠ speedC.  Variable names 
should not be the same as DMC-2x00 instructions.  For example, PR is not a good choice for a variable 
name. 

Examples of valid and invalid variable names are: 

Valid Variable Names 

 POSA 

 pos1 

 speedC 

Invalid Variable Names 

 REALLONGNAME ; Cannot have more than 8 characters 

 123   ; Cannot begin variable name with a number 

 SPEED C  ; Cannot have spaces in the name 

Assigning Values to Variables 
Assigned values can be numbers, internal variables and keywords, functions, controller parameters and 
strings;   

The range for numeric variable values is 4 bytes of integer (231) followed by two bytes of fraction  

(+/-2,147,483,647.9999). 

Numeric values can be assigned to programmable variables using the equal sign.   

Any valid DMC-2x00 function can be used to assign a value to a variable.  For example, 
v1=@ABS[v2] or v2=@IN[1].  Arithmetic operations are also permitted. 

To assign a string value, the string must be in quotations.  String variables can contain up to six 
characters which must be in quotation.  

 
Instruction Interpretation 
posA=_TPA Assigns returned value from TPA command to variable posA 
SPEED=5.75 Assigns value 5.75 to variable SPEED 
input=@IN[2] Assigns logical value of input 2 to variable input 
v2=v1+v3*v4 Assigns the value of v1 plus v3 times v4 to the variable v2. 
Var="CAT" Assign the string, CAT, to Var 

Assigning Variable Values to Controller Parameters 
Variable values may be assigned to controller parameters such as GN or PR.  

 PR v1   Assign v1 to PR command 

 SP _VSS*2000  Assign _VSS*2000 to SP command 



132  •  Chapter 7 Application Programming DMC-2X00  

Displaying the value of variables at the terminal 
Variables may be sent to the screen using the format, variable=.  For example, v1= returns the value of 
the variable v1. 

Example - Using Variables for Joystick 
The example below reads the voltage of an A-B joystick and assigns it to variables VA and VB to 
drive the motors at proportional velocities, where 

 10 volts = 3000 rpm = 200000 c/sec 

 Speed/Analog input = 200000/10 = 20000 
Instruction Interpretation
#JOYSTIK Label
JG 0,0 Set in Jog mode
BGAB Begin Motion
#LOOP Loop
va=@AN[1]*20000 Read joystick A
vb=@AN[2]*20000 Read joystick B
JG va,vb Jog at variable va,vb
JP#LOOP Repeat
EN End

Operands 
Operands allow motion or status parameters of the DMC-2x00 to be incorporated into programmable 
variables and expressions.  Most DMC-2x00 commands have an equivalent operand - which are 
designated by adding an underscore (_) prior to the DMC-2x00 command.  The command reference 
indicates which commands have an associated operand. 

Status commands such as Tell Position return actual values, whereas action commands such as KP or 
SP return the values in the DMC-2x00 registers.  The axis designation is required following the 
command.  

Instruction Interpretation
posA=_TPA Assigns value from Tell Position A to the variable posA.
JP #LOOP,_TEA>5 Jump to #LOOP if the position error of A is greater than 5
JP #ERROR,_TC=1 Jump to #ERROR if the error code equals 1. 

Operands can be used in an expression and assigned to a programmable variable, but they cannot be 
assigned a value.  For example: _TPA=2 is invalid. 

Special Operands (Keywords) 
The DMC-2x00 provides a few additional operands which give access to internal variables that are not 
accessible by standard DMC-2x00 commands. 

Keyword Function 
BGn *Returns a 1 if motion on axis ‘n’ is complete, otherwise returns 0. 
BN *Returns serial # of the board.
DA *Returns the number of arrays available
DL *Returns the number of available labels for programming
DM *Returns the available array memory
HMn *Returns status of Home Switch (equals 0 or 1)
LFn Returns status of Forward Limit switch input of axis ‘n’ (equals 0 or 1) 



DMC-2X00 Chapter 7 Application Programming   133  

_LRn Returns status of Reverse Limit switch input of axis ‘n’ (equals 0 or 1) 

UL *Returns the number of available variables
TIME Free-Running Real Time Clock (off by 2.4% - Resets with power-on).   

NOTE: TIME does not use an underscore character (_) as other keywords. 

 

* These keywords have corresponding commands while the keywords _LF, _LR, and TIME do not 
have any associated commands. All keywords are listed in the Command Summary. 

  
v1=_LFA Assign v1 the state of the Forward Limit Switch on the A-axis 
v3=TIME Assign v3 the current value of the time clock 
v4=_HMD Assign v4 the logical state of the Home input on the D-axis 

Arrays 
For storing and collecting numerical data, the DMC-2x00 provides array space for 8000 elements.   
The arrays are one dimensional and up to 30 different arrays may be defined.  Each array element has a 

numeric range of 4 bytes of integer (231) followed by two bytes of fraction (+/-2,147,483,647.9999). 

Arrays can be used to capture real-time data, such as position, torque and analog input values.  In the 
contouring mode, arrays are convenient for holding the points of a position trajectory in a record and 
playback application. 

Defining Arrays 
An array is defined with the command DM.  The user must specify a name and the number of entries 
to be held in the array.  An array name can contain up to eight characters, starting with an uppercase 
alphabetic character.  The number of entries in the defined array is enclosed in [ ]. 

 
DM posA[7] Defines an array names posA with seven entries  
DM speed[100] Defines an array named speed with 100 entries  
DM posA[0] Frees array space 

Assignment of Array Entries 
Like variables, each array element can be assigned a value.  Assigned values can be numbers or 
returned values from instructions, functions and keywords.   

Array elements are addressed starting at count 0.  For example the first element in the posA array 
(defined with the DM command, DM posA[7]) would be specified as posA[0]. 

Values are assigned to array entries using the equal sign.  Assignments are made one element at a time 
by specifying the element number with the associated array name. 

NOTE:  Arrays must be defined using the command, DM, before assigning entry values. 

 
DM speed[10] Dimension Speed Array 
speed[1]=7650.2 Assigns the first element of the array the value 7650.2 
speed[1]= Returns array element value 
posXA[10]=_TPA Assigns the 10th element the position of A 



134  •  Chapter 7 Application Programming DMC-2X00  

con[2]=@COS[POS]*2 Assigns the 2nd element of the array the cosine of POS * 2. 
timer[1]=TIME Assigns the 1st element of the array TIME 

Using a Variable to Address Array Elements 
An array element number can also be a variable.  This allows array entries to be assigned sequentially 
using a counter. 

 
Instruction Interpretation 
#A Begin Program 
count=0;DM POS[10] Initialize counter and define array 
#LOOP Begin loop 
WT 10 Wait 10 msec 
POS[count]=_TPA Record position into array element 
POS[count]= Report position 
count = count +1 Increment counter 
JP #LOOP, count <10 Loop until 10 elements have been stored 
EN End Program 

The above example records 10 position values at a rate of one value per 10 msec.  The values are 
stored in an array named POS.  The variable, COUNT, is used to increment the array element counter.  
The above example can also be executed with the automatic data capture feature described below. 

Uploading and Downloading Arrays to On Board Memory 
Arrays may be uploaded and downloaded using the QU and QD commands. 

 QU array[],start,end,delim 

 QD array[],start,end 

where array is an array name such as A[]. 

Start is the first element of array (default=0) 

End is the last element of array (default=last element) 

Delim specifies whether the array data is separated by a comma (delim=1) or a carriage return 
(delim=0). 

The file is terminated using <control>Z, <control>Q, <control>D or \. 

Automatic Data Capture into Arrays 
The DMC-2x00 provides a special feature for automatic capture of data such as position, position 
error, inputs or torque.  This is useful for teaching motion trajectories or observing system 
performance.  Up to four types of data can be captured and stored in four arrays.  The capture rate or 
time interval may be specified.  Recording can be done as a one time event or as a circular continuous 
recording. 



DMC-2X00 Chapter 7 Application Programming   135  

 Command Summary - Automatic Data Capture 
command description 
RA  n[],m[],o[],p[] Selects up to four arrays for data capture.  The arrays must be defined with the 

DM command. 

RD type1,type2,type3,type4 Selects the type of data to be recorded, where type1, type2, type3, and type 4 
represent the various types of data (see table below). The order of data type is 
important and corresponds with the order of n,m,o,p arrays in the RA command. 

RC n,m The RC command begins data collection.  Sets data capture time interval where 
n is an integer between 1 and 8 and designates 2n msec between data.  m is 
optional and specifies the number of elements to be captured.  If m is not 
defined, the number of elements defaults to the smallest array defined by DM.  
When m is a negative number, the recording is done continuously in a circular 
manner.  _RD is the recording pointer and indicates the address of the next array 
element.  n=0 stops recording. 

RC? Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in progress

Data Types for Recording: 
data type description 
_DEA 2nd encoder position (dual encoder) 

_TPA Encoder position 

_TEA Position error 

_SHA Commanded position 

_RLA Latched position 

_TI Inputs 

_OP Output 

_TSA Switches (only bit 0-4 valid) 

_SCA Stop code 

_NOA Status bits 

_TTA Torque (reports digital value +/-32544) 

_AFA Analog Input (Letter corresponds to input, e.g. AFA = 1st Analog In, AFB=2nd 
Analog In.) 

NOTE: A may be replaced by B,C,D,E,F,G, or H for capturing data on other axes. 

Operand Summary - Automatic Data Capture 
_RC Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in progress 

_RD Returns address of next array element. 

Example - Recording into an Array 
Instruction Interpretation 
#RECORD Begin program 
DM apos[300],bpos[300] Define A,B position arrays 
DM aerr[300],berr[300] Define A,B error arrays 
RA apos [],aerr[],bpos[],berr[] Select arrays for capture 
RD _TPA,_TEA,_TPB,_TEB Select data types 



136  •  Chapter 7 Application Programming DMC-2X00  

PR 10000,20000 Specify move distance 
RC1 Start recording now, at rate of 2 msec 
BG AB Begin motion 
#A;JP #A,_RC=1 Loop until done 
MG "DONE" Print message 
EN End program  
#PLAY Play back 
n=0 Initial Counter 
JP# DONE,N>300 Exit if done  
n= Print Counter 
apos [n]= Print X position 
bpos [n]= Print Y position 
aerr[n]= Print X error 
berr[n]= Print Y error 
n=n+1 Increment Counter 
#DONE Done 
EN End Program 

Deallocating Array Space 
Array space may be deallocated using the DA command followed by the array name.  DA*[0] 
deallocates all the arrays. 

Input of Data (Numeric and String) 

Input of Data 
The command, IN, is used to prompt the user to input numeric or string data.  Using the IN command, 
the user may specify a message prompt by placing a message in quotations.  When the controller 
executes an IN command, the controller will wait for the input of data.  The input data is assigned to 
the specified variable or array element. 

Example- Inputting Numeric Data 
 #A 

 IN "Enter Length",lenA 

 EN 

In this example, the message “Enter Length” is displayed on the computer screen.  The controller waits 
for the operator to enter a value.  The operator enters the numeric value which is assigned to the 
variable, lenA.  (NOTE:  Do not include a space between the comma at the end of the input message 
and the variable name.) 

Example- Cut-to-Length  
In this example, a length of material is to be advanced a specified distance. When the motion is 
complete, a cutting head is activated to cut the material. The length is variable, and the operator is 
prompted to input it in inches. Motion starts with a start button which is connected to input 1. 



DMC-2X00 Chapter 7 Application Programming   137  

The load is coupled with a 2 pitch lead screw.  A 2000 count/rev encoder is on the motor, resulting in a 
resolution of 4000 counts/inch.  The program below uses the variable len, to length.  The IN command 
is used to prompt the operator to enter the length, and the entered value is assigned to the variable 
LEN. 

Instruction Interpretation 
#BEGIN LABEL 
AC 800000 Acceleration 
DC 800000 Deceleration 
SP 5000 Speed 
len=3.4 Initial length in inches 
#CUT Cut routine 
AI1 Wait for start signal 
IN "enter Length(IN)", len Prompt operator for length in inches 
PR LEN *4000 Specify position in counts 
BGA Begin motion to move material 
AMA Wait for motion done 
SB1 Set output to cut 
WT100;CB1 Wait 100 msec, then turn off cutter 
JP #CUT Repeat process 
EN End program 

Operator Data Entry Mode  
The Operator Data Entry Mode provides for un-buffered data entry through the auxiliary RS-232 port.  
In this mode, the DMC-2x00 provides a buffer for receiving characters.  This mode may only be used 
when executing an applications program.   

The Operator Data Entry Mode may be specified for Port 2 only.  This mode may be exited with the \ 
or <escape> key.   

NOTE:  Operator Data Entry Mode cannot be used for high rate data transfer. 

Set the third field of the CC command to zero to set the Operator Data Entry Mode. 

To capture and decode characters in the Operator Data Mode, the DMC-2x00 provides special the 
following keywords: 

 

Keyword Function 
P2CH Contains the last character received 

P2ST Contains the received string 

P2NM Contains the received number 

P2CD Contains the status code: 
-1 mode disabled 
0 nothing received 
1 received character, but not <enter> 
2 received string, not a number 
3 received number 

NOTE:  The value of P2CD returns to zero after the corresponding string or number is read. 



138  •  Chapter 7 Application Programming DMC-2X00  

These keywords may be used in an applications program to decode data and they may also be used in 
conditional statements with logical operators. 

Example 
Instruction Interpretation 

JP #LOOP,P2CD< >3 Checks to see if status code is 3 (number received) 
JP #P,P1CH="V" Checks if last character received was a V 
PR P2NM Assigns received number to position 
JS #XAXIS,P1ST="X" Checks to see if received string is X 

Using Communication Interrupt  
The DMC-2x00 provides a special interrupt for communication allowing the application program to be 
interrupted by input from the user.  The interrupt is enabled using the CI command.  The syntax for the 
command is CI n: 

n = 0 Don't interrupt Port 2 
n = 1 Interrupt on <enter> Port 2 
n = 2 Interrupt on any character Port 2 
n = -1 Clear any characters in buffer 

The #COMINT label is used for the communication interrupt.  For example, the DMC-2x00 can be 
configured to interrupt on any character received on Port 2.  The #COMINT subroutine is entered 
when a character is received and the subroutine can decode the characters.  At the end of the routine 
the EN command is used.  EN,1 will re-enable the interrupt and return to the line of the program where  
the interrupt was called, EN will just return to the line of the program where it was called without re-
enabling the interrupt.  As with any automatic subroutine, a program must be running in thread 0 at all 
times for it to be enabled. 

Example 
A DMC-2x00 is used to jog the A and B axis.  This program automatically begins upon power-up and 
allows the user to input values from the main serial port terminal.  The speed of either axis may be 
changed during motion by specifying the axis letter followed by the new speed value.  An S stops 
motion on both axes. 

Instruction Interpretation 
#AUTO Label for Auto Execute 
speedA=10000 Initial A speed 
speedB=10000 Initial B speed 
CI 2 Set Port 2 for Character Interrupt 
JG speedA, speedB Specify jog mode speed for A and B axis 
BGXY Begin motion 
#PRINT Routine to print message to terminal 
MG{P2}"TO CHANGE SPEEDS" Print message 
MG{P2}"TYPE A OR B"  
MG{P2}"TYPE S TO STOP"  
#JOGLOOP Loop to change Jog speeds 
JG speedA, speedB Set new jog speed 
JP #JOGLOOP  
EN End of main program 



DMC-2X00 Chapter 7 Application Programming   139  

#COMINT Interrupt routine 
JP #A,P2CH="A" Check for A 
JP #B,P2CH="B" Check for B 
JP #C,P2CH="S" Check for S 
ZS1;CI2;JP#JOGLOOP Jump if not X,Y,S 
#A;JS#NUM  
speedX=val New X speed 
ZS1;CI2;JP#PRINT Jump to Print 
#B;JS#NUM  
speedY=val New Y speed 
ZS1;CI2;JP#PRINT Jump to Print 
#C;ST;AMX;CI-1 Stop motion on S 
MG{^8}, "THE END"  
ZS;EN,1 End-Re-enable interrupt 
#NUM Routine for entering new jog speed 
MG "ENTER",P2CH{S},"AXIS SPEED" 
{N} 

Prompt for value 

#NUMLOOP; CI-1 Check for enter 
#NMLP Routine to check input from terminal 
JP #NMLP,P2CD<2 Jump to error if string 
JP #ERROR,P2CD=2 Read value 
val=P2NM  
EN End subroutine 
#ERROR;CI-1 Error Routine 
MG "INVALID-TRY AGAIN" Error message 
JP #NMLP  
EN End 

Inputting String Variables 
String variables with up to six characters may be input using the specifier, {Sn} where n represents the 
number of string characters to be input.  If n is not specified, six characters will be accepted.  For 
example, IN "Enter A,B or C", V{S} specifies a string variable to be input. 

The DMC-2x00, stores all variables as 6 bytes of information.  When a variable is specified as a 
number, the value of the variable is represented as 4 bytes of integer and 2 bytes of fraction.  When a 
variable is specified as a string, the variable can hold up to 6 characters (each ASCII character is 1 
byte).  When using the IN command for string input, the first input character will be placed in the top 
byte of the variable and the last character will be placed in the lowest significant byte of the fraction.  
The characters can be individually separated by using bit-wise operations, see section Bit-wise 
Operators. 

Output of Data (Numeric and String) 
Numerical and string data can be output from the controller using several methods.  The message 
command, MG, can output string and numerical data.  Also, the controller can be commanded to return 
the values of variables and arrays, as well as other information using the interrogation commands (the 
interrogation commands are described in chapter 5). 



140  •  Chapter 7 Application Programming DMC-2X00  

Sending Messages 
Messages may be sent to the bus using the message command, MG.  This command sends specified 
text and numerical or string data from variables or arrays to the screen. 

Text strings are specified in quotes and variable or array data is designated by the name of the variable 
or array.  For example: 

MG "The Final Value is", result 

In addition to variables, functions and commands, responses can be used in the message command.  
For example: 

 MG "Analog input is", @AN[1] 

 MG "The Position of A is", _TPA 

Specifying the Port for Messages: 
By default, messages will be sent through the port specified by the USB/Ethernet Dip Switch - the state 
of this switch upon power up will determine if messages will be sent to USB port (DMC-2000), or 
Ethernet (DMC-2100/2200) the Main Serial Port.   However, the port can be specified with the 
specifier, {P1} for the main serial port {P2} for auxiliary serial port, {U} for the USB port , or {E} for 
the Ethernet port. 

MG {P2} "Hello World"  Sends message to Auxiliary Port 

Formatting Messages 
String variables can be formatted using the specifier, {Sn} where n is the number of characters, 1 thru 
6.  For example: 

 MG STR {S3} 

This statement returns 3 characters of the string variable named STR. 

Numeric data may be formatted using the {Fn.m} expression following the completed MG statement.  
{$n.m} formats data in HEX instead of decimal. The actual numerical value will be formatted with n 
characters to the left of the decimal and m characters to the right of the decimal.  Leading zeros will be 
used to display specified format. 

For example: 

 MG "The Final Value is", result {F5.2} 

If the value of the variable result is equal to 4.1, this statement returns the following:  

The Final Value is 00004.10 

If the value of the variable result is equal to 999999.999, the above message statement returns the 
following:  

The Final Value is 99999.99 

The message command normally sends a carriage return and line feed following the statement.  The 
carriage return and the line feed may be suppressed by sending {N} at the end of the statement.  This is 
useful when a text string needs to surround a numeric value. 

Example: 

#A 

JG 50000;BGA;ASA 

MG "The Speed is", _TVA {F5.1} {N} 

MG "counts/sec" 



DMC-2X00 Chapter 7 Application Programming   141  

EN 

When #A is executed, the above example will appear on the screen as: 

 The speed is 50000 counts/sec 

Using the MG Command to Configure Terminals 
The MG command can be used to configure a terminal.  Any ASCII character can be sent by using  the 
format {^n} where n is any integer between 1 and 255. 

Example: 

 MG {^07} {^255} 

sends the ASCII characters represented by 7 and 255 to the bus. 

Summary of Message Functions 
function description 
" " Surrounds text string 

{Fn.m} Formats numeric values in decimal n digits to the left of the decimal point and 
m digits to the right 

{P1}, {P2}, {U} or {E} Send message to Main Serial Port, Auxiliary Serial Port, USB Port or Ethernet 
Port 

{$n.m} Formats numeric values in hexadecimal 

{^n} Sends ASCII character specified by integer n 

{N} Suppresses carriage return/line feed 

{Sn} Sends the first n characters of a string variable, where n is 1 thru 6. 

Displaying Variables and Arrays  
Variables and arrays may be sent to the screen using the format, variable= or array[x]=.  For example, 
v1= returns the value of v1. 

Example - Printing a Variable and an Array element 
Instruction Interpretation 
#DISPLAY Label 
DM posA[7] Define Array POSA with 7 entries 
PR 1000 Position Command 
BGX Begin 
AMX After Motion 
v1=_TPA Assign Variable v1 
posA[1]=_TPA Assign the first entry 
v1= Print v1 

Interrogation Commands 
The DMC-2x00 has a set of commands that directly interrogate the controller.  When these command 
are entered, the requested data is returned in decimal format on the next line followed by a carriage 
return and line feed.  The format of the returned data can be changed using the Position Format (PF), 
and Leading Zeros (LZ) command.  For a complete description of interrogation commands, see Ch 5. 



142  •  Chapter 7 Application Programming DMC-2X00  

Using the PF Command to Format Response from Interrogation 
Commands 
The command, PF, can change format of the values returned by theses interrogation commands: 

BL ? LE ? 
DE ? PA ? 
DP ? PR ? 
EM ? TN ? 
FL ? VE ? 
IP ? TE 
TP  

The numeric values may be formatted in decimal or hexadecimal with a specified number of digits to 
the right and left of the decimal point using the PF command. 

Position Format is specified by: 

 PF m.n 

where m is the number of digits to the left of the decimal point (0 thru 10) and n is the number of digits 
to the right of the decimal point (0 thru 4) A negative sign for m specifies hexadecimal format. 

Hex values are returned preceded by a $ and in 2's complement.  Hex values should be input as signed 
2's complement, where negative numbers have a negative sign.  The default format is PF 10.0. 

If the number of decimal places specified by PF is less than the actual value, a nine appears in all the 
decimal places. 

Example 
Instruction Interpretation 
:DP21 Define position 
:TPA Tell position 
0000000021 Default format 
:PF4 Change format to 4 places 
:TPA Tell position 
0021 New format 
:PF-4 Change to hexadecimal format 
:TPA Tell Position 
$0015 Hexadecimal value 
:PF2 Format 2 places 
:TPA Tell Position 
99 Returns 99 if position greater than 99 

Removing Leading Zeros from Response to Interrogation Commands 
The leading zeros on data returned as a response to interrogation commands can be removed by the use 
of the command, LZ. 

 
LZ0 Disables the LZ function 
TP Tell Position Interrogation Command 

-0000000009, 0000000005 Response (With Leading Zeros) 



DMC-2X00 Chapter 7 Application Programming   143  

LZ1 Enables the LZ function 
TP Tell Position Interrogation Command 
-9, 5 Response (Without Leading Zeros) 

Local Formatting of Response of Interrogation Commands 
The response of interrogation commands may be formatted locally.  To format locally, use the 
command, {Fn.m} or {$n.m} on the same line as the interrogation command.  The symbol F specifies 
that the response should be returned in decimal format and $ specifies hexadecimal.  n is the number of 
digits to the left of the decimal, and m is the number of digits to the right of the decimal. 

 
TP {F2.2} Tell Position in decimal format 2.2 
-05.00, 05.00, 00.00, 07.00 Response from Interrogation Command 
TP {$4.2} Tell Position in hexadecimal format 4.2 
FFFB.00,$0005.00,$0000.00,$0007.00 Response from Interrogation Command 

Formatting Variables and Array Elements 
The Variable Format (VF) command is used to format variables and array elements.  The VF 
command is specified by: 

 VF m.n 

where m is the number of digits to the left of the decimal point (0 thru  10) and n is the number of 
digits to the right of the decimal point (0 thru 4). 

A negative sign for m specifies hexadecimal format.  The default format for VF is VF 10.4 

Hex values are returned preceded by a $ and in 2's complement. 
Instruction Interpretation 
v1=10 Assign v1 
v1= Return v1 
     :0000000010.0000 Response - Default format 
VF2.2 Change format 
v1= Return v1 
     :10.00 Response - New format 
vF-2.2 Specify hex format 
v1= Return v1 
$0A.00 Response - Hex value 
VF1 Change format 
v1= Return v1 
     :9 Response - Overflow 

Local Formatting of Variables 
PF and VF commands are global format commands that affect the format of all relevant returned 
values and variables.  Variables may also be formatted locally.  To format locally, use the command, 
{Fn.m} or {$n.m} following the variable name and the ‘=’ symbol.  F specifies decimal and $ specifies 
hexadecimal.  n is the number of digits to the left of the decimal, and m is the number of digits to the 
right of the decimal. 



144  •  Chapter 7 Application Programming DMC-2X00  

 
Instruction Interpretation 
v1=10 Assign v1 
v1= Return v1 
     :0000000010.0000 Default Format 
v1={F4.2} Specify local format 
     :0010.00 New format 
v1={$4.2} Specify hex format 
     :$000A.00 Hex value 
v1="ALPHA" Assign string "ALPHA" to v1 
v1={S4} Specify string format first 4 characters 
     :ALPH  

The local format is also used with the MG command. 

Converting to User Units 
Variables and arithmetic operations make it easy to input data in desired user units such as inches or 
RPM. 

The DMC-2x00 position parameters such as PR, PA and VP have units of quadrature counts.  Speed 
parameters such as SP, JG and VS have units of counts/sec.  Acceleration parameters such as AC, DC, 
VA and VD have units of counts/sec2.  The controller interprets time in milliseconds. 

All input parameters must be converted into these units.  For example, an operator can be prompted to 
input a number in revolutions.  A program could be used such that the input number is converted into 
counts by multiplying it by the number of counts/revolution. 

 
Instruction Interpretation 
#RUN Label 
IN "ENTER # OF REVOLUTIONS",n1 Prompt for revs 
PR n1*2000 Convert to counts 
IN "ENTER SPEED IN RPM",s1 Prompt for RPMs 
SP s1*2000/60 Convert to counts/sec 
IN "ENTER ACCEL IN RAD/SEC2",a1 Prompt for ACCEL 
AC a1*2000/(2*3.14) Convert to counts/sec2 
BG Begin motion 
EN End program 

Hardware I/O 

Digital Outputs 
The DMC-2x00 has an 8-bit uncommitted output port and an additional 64 I/O which may be 
configured as inputs or outputs with the CO command for controlling external events.   The DMC-
2x50 through DMC-2x80 has an additional 8 outputs.  Each bit on the output port may be set and 
cleared with the software instructions SB (Set Bit) and CB (Clear Bit), or OB (define output bit). 



DMC-2X00 Chapter 7 Application Programming   145  

Example- Set Bit and Clear Bit 
Instruction Interpretation 
SB6 Sets bit 6 of output port 
CB4 Clears bit 4 of output port 

Example- Output Bit 
The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a 
variable, array, input or expression.  Any non-zero value results in a set bit. 

Instruction Interpretation 
OB1, POS Set Output 1 if the variable POS is non-zero.  Clear Output 1 if 

POS equals 0. 
OB 2, @IN [1] Set Output 2 if Input 1 is high.  If Input 1 is low, clear Output 2. 
OB 3, @IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high. 
OB 4, COUNT [1] Set Output 4 if element 1 in the array COUNT is non-zero. 

The output port can be set by specifying an 8-bit word using the instruction OP (Output Port).  This 
instruction allows a single command to define the state of the entire 8-bit output port, where 20 is 
output 1, 21 is output 2 and so on.  A 1 designates that the output is on. 

Example- Output Port 
Instruction Interpretation 
OP6 Sets outputs 2 and 3 of output port to high.  All other bits are 0.  (21 + 22 = 

6) 
OP0 Clears all bits of output port to zero 
OP 255 Sets all bits of output port to one.   

(22 + 21 + 22 + 23 + 24 + 25 + 26 + 27) 

The output port is useful for setting relays or controlling external switches and events during a motion 
sequence. 

Example - Turn on output after move 
Instruction Interpretation
#OUTPUT Label 
PR 2000 Position Command 
BG Begin 
AM After move 
SB1 Set Output 1 
WT 1000 Wait 1000 msec 
CB1 Clear Output 1 
EN End 

Digital Inputs 
The general digital inputs for are accessed by using the @IN[n] function or the TI command.  The 
@IN[n] function returns the logic level of the specified input, n, where n is a number 1 through 96..  



146  •  Chapter 7 Application Programming DMC-2X00  

Example - Using Inputs to control program flow 
Instruction Interpretation 
JP #A,@IN[1]=0 Jump to A if input 1 is low 
JP #B,@IN[2]=1 Jump to B if input 2 is high 
AI 7 Wait until input 7 is high 
AI -6 Wait until input 6 is low 

Example - Start Motion on Switch 
Motor A must turn at 4000 counts/sec when the user flips a panel switch to on. When panel switch is 
turned to off position, motor A must stop turning. 

Solution:  Connect panel switch to input 1 of DMC-2x00.  High on input 1 means switch is in on 
position. 

Instruction Interpretation 
#S;JG 4000 Set speed 
AI 1;BGA Begin after input 1 goes high 
AI -1;STA Stop after input 1 goes low 
AMA;JP #S After motion, repeat 
EN;  

The Auxiliary Encoder Inputs 
The auxiliary encoder inputs can be used for general use.  For each axis, the controller has one 
auxiliary encoder and each auxiliary encoder consists of two inputs, channel A and channel B.  The 
auxiliary encoder inputs are mapped to the inputs 81-96. 

Each input from the auxiliary encoder is a differential line receiver and can accept voltage levels 
between +/- 12 volts.  The inputs have been configured to accept TTL level signals.  To connect TTL 
signals, simply connect the signal to the + input and leave the - input disconnected.   For other signal 
levels, the - input should be connected to a voltage that is ½ of the full voltage range (for example, 
connect the - input to 6 volts if the signal is a 0 - 12 volt logic). 

Example: 

A DMC-2x10 has one auxiliary encoder.  This encoder has two inputs (channel A and channel B).  
Channel A input is mapped to input 81 and Channel B input is mapped to input 82.  To use this input 
for 2 TTL signals, the first signal will be connected to AA+ and the second to AB+.   AA- and AB- 
will be left unconnected.  To access this input, use the function @IN[81] and @IN[82]. 

NOTE: The auxiliary encoder inputs are not available for any axis that is configured for stepper 
motor.   

Input Interrupt Function 
The DMC-2x00 provides an input interrupt function which causes the program to automatically 
execute the instructions following the #ININT label.  This function is enabled using the II m,n,o 
command.  The m specifies the beginning input and n specifies the final input in the range.  The 
parameter o is an interrupt mask. If m and n are unused, o contains a number with the mask.  A 1 
designates that input to be enabled for an interrupt, where 20 is bit 1, 21 is bit 2 and so on.  For 
example, II,,5 enables inputs 1 and 3 (20 + 22 = 5). 

A low input on any of the specified inputs will cause automatic execution of the #ININT subroutine.  
The Return from Interrupt (RI) command is used to return from this subroutine to the place in the 
program where the interrupt had occurred.  If it is desired to return to somewhere else in the program 



DMC-2X00 Chapter 7 Application Programming   147  

after the execution of the #ININT subroutine, the Zero Stack (ZS) command is used followed by 
unconditional jump statements. 

 

Important:  Use the RI command (not EN) to return from the #ININT subroutine. 

 

Example - Input Interrupt 
Instruction Interpretation 
#A Label #A 
II 1 Enable input 1 for interrupt function 
JG 30000,-20000 Set speeds on A and B axes 
BG AB Begin motion on A and B axes 
#B Label #B 
TP AB Report A and B axes positions 
WT 1000 Wait 1000 milliseconds 
JP #B Jump to #B 
EN End of program 
#ININT Interrupt subroutine 
MG "Interrupt has occurred"    Displays the message 
ST AB Stops motion on A and B axes 
#LOOP;JP #LOOP,@IN[1]=0 Loop until Interrupt cleared 
JG 15000,10000 Specify new speeds 
WT 300 Wait 300 milliseconds 
BG AB Begin motion on A and B axes 
RI Return from Interrupt subroutine 

Analog Inputs 
The DMC-2x00 provides eight analog inputs.  The value of these inputs in volts may be read using the 
@AN[n] function where n is the analog input 1 through 8. The resolution of the Analog-to-Digital 
conversion is 12 bits (16-bit ADC is available as an option).  Analog inputs are useful for reading 
special sensors such as temperature, tension or pressure. 

The following examples show programs which cause the motor to follow an analog signal.  The first 
example is a point-to-point move.  The second example shows a continuous move. 

Example - Position Follower (Point-to-Point) 
Objective - The motor must follow an analog signal.  When the analog signal varies by 10V, motor 
must move 10000 counts. 

Method:  Read the analog input and command A to move to that point. 
Instruction Interpretation 
#POINTS Label 
SP 7000 Speed 
AC 80000;DC 80000 Acceleration 
#LOOP  
VP=@AN[1]*1000 Read and analog input, compute position 



148  •  Chapter 7 Application Programming DMC-2X00  

PA VP Command position 
BGA Start motion 
AMA After completion 
JP #LOOP Repeat 
EN End 

Example - Position Follower (Continuous Move) 
Method:  Read the analog input, compute the commanded position and the position error.  Command 
the motor to run at a speed in proportions to the position error. 

Instruction Interpretation 
#CONT Label 
AC 80000;DC 80000 Acceleration rate 
JG 0 Start job mode 
BGX Start motion 
#LOOP  
vp=@AN[1]*1000 Compute desired position 
ve=vp-_TPA Find position error 
vel=ve*20 Compute velocity 
JG vel Change velocity 
JP #LOOP Change velocity 
EN End 

Extended I/O of the DMC-2x00 Controller  
The DMC-2x00 controller offers 64 extended I/O points which can be configured as inputs or outputs 
in 8 bit increments through software.  The I/O points are accessed through 1 80 pin high density 
connector. 

Configuring the I/O of the DMC-2x00 
The 64 extended I/O points of the DMC-2x00 series controller can be configured in blocks of 8.  The 
extended I/O is denoted as blocks 2-9 or bits 17-80. 

The command, CO, is used to configure the extended I/O as inputs or outputs.  The CO command has 
one field: 

 CO n  

where n is a decimal value which represents a binary number.  Each bit of the binary number 
represents one block of extended I/O.  When set to 1, the corresponding block is configured as an 
output. 

The least significant bit represents block 2 and the most significant bit represents block 9.  The decimal 
value can be calculated by the following formula.  n = n2 + 2*n3 + 4*n4 + 8*n5 +16* n6 +32* n7 +64* 
n8 +128* n9 where nx represents the block.  If the nx value is a one, then the block of 8 I/O points is to 
be configured as an output.  If the nx value is a zero, then the block of 8 I/O points will be configured 
as an input.  For example, if block 4 and 5 is to be configured as an output, CO 12 is issued. 



DMC-2X00 Chapter 7 Application Programming   149  

 

8-Bit I/O Block Block Binary 
Representation 

Decimal Value for 
Block 

17-24 2 20 1 
25-32 3 

211 
2 

33-40 4 22  4   

41-48 5 23 8  

49-56 6 24 16 

57-64 7 25 32 

65-72 8 26 64 

73-80 9 27 128 

The simplest method for determining n:    

Step 1. Determine which 8-bit I/O blocks to be configured as outputs.   

Step 2. From the table, determine the decimal value for each I/O block to be set as an output.   

Step 3.  Add up all of the values determined in step 2.  This is the value to be used for n. 

For example, if blocks 2 and 3 are to be outputs, then n is 3 and the command, CO3, should be issued.   
NOTE: This calculation is identical to the formula: n = n2 + 2*n3 + 4*n4 + 8*n5 +16* n6 +32* n7 +64* 
n8 +128* n9 where nx represents the block.   

Saving the State of the Outputs in Non-Volatile Memory 
The configuration of the extended I/O and the state of the outputs can be stored in the EEPROM with 
the BN command.  If no value has been set, the default of CO 0 is used (all blocks are inputs). 

Accessing Extended I/O 
When configured as an output, each I/O point may be defined with the SBn and CBn commands 
(where n=1 through 8 and 17 through 80).  Outputs may also be defined with the conditional 
command, OBn (where n=1 through 8 and 17 through 80). 

The command, OP, may also be used to set output bits, specified as blocks of data.  The OP command 
accepts 5 parameters.  The first parameter sets the values of the main output port of the controller 
(Outputs 1-8, block 0).   The additional parameters set the value of the extended I/O as outlined: 

OP m,a,b,c,d 

where m is the decimal representation of the bits 1-8 (values from 0 to 255) and a,b,c,d represent the 
extended I/O in consecutive groups of 16 bits (values from 0 to 65535). Arguments which are given for 
I/O points which are configured as inputs will be ignored.  The following table describes the arguments 
used to set the state of outputs. 

Argument Blocks Bits Description 
m 0 1-8 General Outputs 
a 2,3 17-32 Extended I/O 
b 4,5 33-48 Extended I/O 
c 6,7 49-64 Extended I/O 
d 8,9 65-80 Extended I/O 



150  •  Chapter 7 Application Programming DMC-2X00  

For example, if block 8 is configured as an output, the following command may be issued: 

OP 7,,,,7 

This command will set bits 1,2,3 (block 0) and bits 65,66,67 (block 8) to 1.  Bits 4 through 8 and bits 
68 through 80 will be set to 0.  All other bits are unaffected. 

When accessing I/O blocks configured as inputs, use the TIn command.  The argument 'n' refers to the 
block to be read (n=0,2,3,4,5,6,7,8 or 9).  The value returned will be a decimal representation of the 
corresponding bits. 

Individual bits can be queried using the @IN[n] function (where n=1 through 8 or 17 through 80).  If 
the following command is issued; 

 MG @IN[17] 

the controller will return the state of the least significant bit of block 2 (assuming block 2 is configured 
as an input). 

Interfacing to Grayhill or OPTO-22 G4PB24 
The DMC-2x00 controller uses one 80 Pin high density connector which requires connection to a 80 
pin high density cable (Galil CABLE-80).  This cable can be converted to 2 50 pin IDC connectors 
which are compatible with I/O mounting racks such as Grayhill 70GRCM32-HL and OPTO-22 
G4PB24.  To convert the 80 pin cable, use the CB-50-80 adapter from Galil.  The 50 pin ribbon cables 
which connect to the CB-50-80 connect directly into the I/O mounting racks. 

When using the OPTO-22 G4PB24 I/O mounting rack, the user will only have access to 48 of the 64 
I/O points available on the controller.  Block 5 and Block 9 must be configured as inputs and will be 
grounded by the I/O rack. 

Example Applications 

Wire Cutter 
An operator activates a start switch.  This causes a motor to advance the wire a distance of 10".  When 
the motion stops, the controller generates an output signal which activates the cutter.  Allowing 100 ms 
for the cutting completes the cycle. 

Suppose that the motor drives the wire by a roller with a 2" diameter.  Also assume that the encoder 
resolution is 1000 lines per revolution.  Since the circumference of the roller equals 2π inches, and it 
corresponds to 4000 quadrature, one inch of travel equals: 

 4000/2π = 637 count/inch 

This implies that a distance of 10 inches equals 6370 counts, and a slew speed of 5 inches per second, 
for example, equals 3185 count/sec. 

The input signal may be applied to I1, for example, and the output signal is chosen as output 1.  The 
motor velocity profile and the related input and output signals are shown in Fig. 7.1. 

The program starts at a state that we define as #A.  Here the controller waits for the input pulse on I1.  
As soon as the pulse is given, the controller starts the forward motion. 

Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an 
additional 80 ms before returning to #A for a new cycle. 



DMC-2X00 Chapter 7 Application Programming   151  

 
Instruction Interpretation
#A Label 
AI1 Wait for input 1 
PR 6370 Distance 
SP 3185 Speed 
BGA Start Motion 
AMA After motion is complete 
SB1 Set output bit 1 
WT 20 Wait 20 ms 
CB1 Clear output bit 1 
WT 80 Wait 80 ms 
JP #A Repeat the process 

 
START PULSE  I1

MOTOR VELOCITY

OUTPUT PULSE

TIME INTERVALS
move

output

wait ready move  
Figure 7.1 - Motor Velocity and the Associated Input/Output signals 

A-B Table Controller 
An A-B-C system must cut the pattern shown in Fig. 7.2.  The A-B table moves the plate while the C-
axis raises and lowers the cutting tool. 

The solid curves in Fig. 7.2 indicate sections where cutting takes place. Those must be performed at a 
feed rate of 1 inch per second.  The dashed line corresponds to non-cutting moves and should be 
performed at 5 inch per second. The acceleration rate is 0.1 g. 

The motion starts at point A, with the C-axis raised.  An A-B motion to point B is followed by 
lowering the C-axis and performing a cut along the circle.  Once the circular motion is completed, the 
C-axis is raised and the motion continues to point C, etc. 

Assume that all of the 3 axes are driven by lead screws with 10 turns-per-inch pitch.  Also assume 
encoder resolution of 1000 lines per revolution.  This results in the relationship: 



152  •  Chapter 7 Application Programming DMC-2X00  

 1 inch = 40,000 counts 

and the speeds of 

 1 in/sec = 40,000 count/sec 

 5 in/sec = 200,000 count/sec 

an acceleration rate of 0.1g equals 

 0.1g = 38.6 in/s2 = 1,544,000 count/s2 

Note that the circular path has a radius of 2" or 80000 counts, and the motion starts at the angle of 270° 
and traverses 360° in the CW (negative direction).  Such a path is specified with the instruction 

 CR 80000,270,-360 

Further assume that the C must move 2" at a linear speed of 2" per second.  The required motion is 
performed by the following instructions: 

Instruction Interpretation
#A Label 
VM AB Circular interpolation for AB 
VP 160000,160000 Positions 
VE End Vector Motion 
VS 200000 Vector Speed 
VA 1544000 Vector Acceleration 
BGS Start Motion 
AMS When motion is complete 
PR,,-80000 Move C down 
SP,,80000 C speed 
BGC Start C motion 
AMC Wait for completion of C motion 
CR 80000,270,-360 Circle 
VE  
VS 40000 Feed rate 
BGS Start circular move 
AMS Wait for completion 
PR,,80000 Move C up 
BGC Start C move 
AMC Wait for C completion 
PR -21600 Move A 
SP 20000 Speed A 
BGA Start A 
AMA Wait for A completion 
PR,,-80000 Lower C 
BGC  
AMC  
CR 80000,270,-360 C second circle move 
VE  
VS 40000  
BGS  
AMS  



DMC-2X00 Chapter 7 Application Programming   153  

PR,,80000 Raise C 
BGC  
AMC  
VP -37600,-16000 Return AB to start 
VE  
VS 200000  
BGS  
AMS  
EN  

 
 

R=2 

B C

A 
0 4 9.3

4 

B 

A 
 

Figure 7.2 - Motor Velocity and the Associated Input/Output signals 

Speed Control by Joystick 
The speed of a motor is controlled by a joystick.  The joystick produces a signal in the range between -
10V and +10V.  The objective is to drive the motor at a speed proportional to the input voltage. 

Assume that a full voltage of 10 volts must produce a motor speed of 3000 rpm with an encoder 
resolution of 1000 lines or 4000 count/rev.  This speed equals: 

 3000 rpm = 50 rev/sec = 200000 count/sec 

The program reads the input voltage periodically and assigns its value to the variable vin.  To get a 
speed of 200,000 ct/sec for 10 volts, we select the speed as 



154  •  Chapter 7 Application Programming DMC-2X00  

 Speed = 20000 x vin 

The corresponding velocity for the motor is assigned to the VEL variable. 

 
Instruction 
#A 
JG0 
BGA 
#B 
vin=@AN[1] 
vel=vin*20000 
JG vel 
JP #B 
EN 

Position Control by Joystick 
This system requires the position of the motor to be proportional to the joystick angle.  Furthermore, 
the ratio between the two positions must be programmable.  For example, if the control ratio is 5:1, it 
implies that when the joystick voltage is 5 volts, corresponding to 1024 counts, the required motor 
position must be 5120 counts.  The variable V3 changes the position ratio. 

Instruction Interpretation 
#A Label 
v3=1024 Initial position ratio 
DP0 Define the starting position 
JG0 Set motor in jog mode as zero 
BGA Start 
#B  
v1=@AN[1] Read analog input 
v2=v1*v3 Compute the desired position 
v4=v2-_TPA-_TEA Find the following error 
v5=v4*20 Compute a proportional speed 
JG v5 Change the speed 
JP #B Repeat the process 
EN End 

Backlash Compensation by Sampled Dual-Loop 
The continuous dual loop, enabled by the DV1 function is an effective way to compensate for 
backlash.  In some cases, however, when the backlash magnitude is large, it may be difficult to 
stabilize the system.  In those cases, it may be easier to use the sampled dual loop method described 
below. 

This design example addresses the basic problems of backlash in motion control systems.  The 
objective is to control the position of a linear slide precisely.  The slide is to be controlled by a rotary 
motor, which is coupled to the slide by a lead screw.  Such a lead screw has a backlash of 4 micron, 
and the required position accuracy is for 0.5 micron. 



DMC-2X00 Chapter 7 Application Programming   155  

The basic dilemma is where to mount the sensor.  If you use a rotary sensor, you get a 4 micron 
backlash error.  On the other hand, if you use a linear encoder, the backlash in the feedback loop will 
cause oscillations due to instability. 

An alternative approach is the dual-loop, where we use two sensors, rotary and linear.  The rotary 
sensor assures stability (because the position loop is closed before the backlash) whereas the linear 
sensor provides accurate load position information.  The operation principle is to drive the motor to a 
given rotary position near the final point.  Once there, the load position is read to find the position error 
and the controller commands the motor to move to a new rotary position which eliminates the position 
error. 

Since the required accuracy is 0.5 micron, the resolution of the linear sensor should preferably be twice 
finer.  A linear sensor with a resolution of 0.25 micron allows a position error of +/-2 counts. 

The dual-loop approach requires the resolution of the rotary sensor to be equal or better than that of the 
linear system.  Assuming that the pitch of the lead screw is 2.5mm (approximately 10 turns per inch), a 
rotary encoder of 2500 lines per turn or 10,000 count per revolution results in a rotary resolution of 
0.25 micron.  This results in equal resolution on both linear and rotary sensors. 

To illustrate the control method, assume that the rotary encoder is used as a feedback for the X-axis, 
and that the linear sensor is read and stored in the variable LINPOS.  Further assume that at the start, 
both the position of X and the value of LINPOS are equal to zero.  Now assume that the objective is to 
move the linear load to the position of 1000. 

The first step is to command the X motor to move to the rotary position of 1000.  Once it arrives we 
check the position of the load.  If, for example, the load position is 980 counts, it implies that a 
correction of 20 counts must be made.  However, when the X-axis is commanded to be at the position 
of 1000, suppose that the actual position is only 995, implying that X has a position error of 5 counts, 
which will be eliminated once the motor settles.  This implies that the correction needs to be only 15 
counts, since 5 counts out of the 20 would be corrected by the X-axis.  Accordingly, the motion 
correction should be: 

 Correction = Load Position Error - Rotary Position Error 

The correction can be performed a few times until the error drops below +/-2 counts.  Often, this is 
performed in one correction cycle. 

Instruction Interpretation 
#A Label 
DP0 Define starting positions as zero 
linpos=0  
PR 1000 Required distance 
BGA Start motion 
#B  
AMA Wait for completion 
WT 50 Wait 50 msec 
linpos  = _DEA Read linear position 
er=1000- linpos -_TEA Find the correction 
JP #C,@ABS[er]<2 Exit if error is small 
PR er Command correction 
BGA  
JP #B Repeat the process 
#C  
EN  

 



156  •  Chapter 7 Application Programming DMC-2X00  

THIS PAGE LEFT BLANK INTENTIONALLY



DMC-2X00 Chapter 7 Application Programming   157  

Chapter 8  Hardware & Software 
Protection 

Introduction 
The DMC-2x00 provides several hardware and software features to check for error conditions and to 
inhibit the motor on error.  These features help protect the various system components from damage. 

 

WARNING:  Machinery in motion can be dangerous!  It is the responsibility of the user to design 
effective error handling and safety protection as part of the machine.  Since the dmc-2x00 is an 
integral part of the machine, the engineer should design his overall system with protection against 
a possible component failure on the dmc-2x00.  Galil shall not be liable or responsible for any 
incidental or consequential damages. 

 

Hardware Protection 
The DMC-2x00 includes hardware input and output protection lines for various error and mechanical 
limit conditions.  These include: 

Output Protection Lines 
Amp Enable - This signal goes low when the motor off command is given, when the position 

error exceeds the value specified by the Error Limit (ER) command, or when off-on-error 
condition is enabled (OE1) and the abort command is given.  Each axis amplifier has separate 
amplifier enable lines.  This signal also goes low when the watch-dog timer is activated, or 
upon reset.   

NOTE: The standard configuration of the AEN signal is TTL active low.  Both the polarity 
and the amplitude can be changed if you are using the ICM-2900 interface board.  To make 
these changes, see section entitled ‘Amplifier Interface’ pg 3-25. 

Error Output - The error output is a TTL signal which indicates on error condition in the 
controller.  This signal is available on the interconnect module as ERROR.  When the error 
signal is low, this indicates on of the following error conditions. 

1.  At least one axis has a position error greater than the error limit.  The error limit is set by 
using the command ER. 

2.  The reset line on the controller is held low or is being affected by noise. 

3.  There is a failure on the controller and the processor is resetting itself.  

4.    There is a failure with the output IC which drives the error signal. 

Input Protection Lines 
General Abort - A low input stops commanded motion instantly without a controlled 

deceleration.  For any axis in which the Off-On-Error function is enabled, the amplifiers will 
be disabled.  This could cause the motor to ‘coast’ to a stop.  If the Off-On-Error function is 



158  •  Chapter 7 Application Programming DMC-2X00  

not enabled, the motor will instantaneously stop and servo at the current position.  The Off-
On-Error function is further discussed in this chapter. 

Selective Abort - The controller can be configured to provide an individual abort for each axis.  
Activation of the selective abort signal will act the same as the Abort Input but only on the 
specific axis.  To configure the controller for selective abort, issue the command CN,,,1.  This 
configures the inputs 5,6,7,8,13,14,15,16 to act as selective aborts for axes A,B,C,D,E,F,G,H 
respectively. 

Forward Limit Switch - Low input inhibits motion in forward direction.  If the motor is moving 
in the forward direction when the limit switch is activated, the motion will decelerate and 
stop.  In addition, if the motor is moving in the forward direction, the controller will 
automatically jump to the limit switch subroutine, #LIMSWI (if such a routine has been 
written by the user).  The CN command can be used to change the polarity of the limit 
switches. 

Reverse Limit Switch - Low input inhibits motion in reverse direction.  If the motor is moving in 
the reverse direction when the limit switch is activated, the motion will decelerate and stop.  
In addition, if the motor is moving in the reverse direction, the controller will automatically 
jump to the limit switch subroutine, #LIMSWI (if such a routine has been written by the user).  
The CN command can be used to change the polarity of the limit switches. 

Software Protection 
The DMC-2x00 provides a programmable error limit.  The error limit can be set for any number 
between 1 and 32767 using the ER n command.  The default value for ER is 16384. 

 
ER 200,300,400,500 Set A-axis error limit for 200, B-axis error limit to 300, C-axis error limit to 

400 counts, D-axis error limit to 500 counts 
ER,1,,10 Set B-axis error limit to 1 count, set D-axis error limit to 10 counts. 

The units of the error limit are quadrature counts.  The error is the difference between the command 
position and actual encoder position.  If the absolute value of the error exceeds the value specified by 
ER, the DMC-2x00 will generate several signals to warn the host system of the error condition. These 
signals include: 

 
SIGNAL OR FUNCTION STATE IF ERROR OCCURS 
# POSERR Jumps to automatic excess position error subroutine 
Error Light Turns on 
OE Function Shuts motor off if OE1 
AEN Output Line Goes low 

The Jump on Condition statement is useful for branching on a given error within a program.  The 
position error of A,B,C and D can be monitored during execution using the TE command. 

Programmable Position Limits 
The DMC-2x00 provides programmable forward and reverse position limits.  These are set by the BL 
and FL software commands.  Once a position limit is specified, the DMC-2x00 will not accept position 
commands beyond the limit. Motion beyond the limit is also prevented. 



DMC-2X00 Chapter 7 Application Programming   159  

 

Example 
Instruction Interpretation 
DP0,0,0 Define Position 
BL -2000,-4000,-8000 Set Reverse position limit 
FL 2000,4000,8000 Set Forward position limit 
JG 2000,2000,2000 Jog 
BG ABC Begin 

(motion stops at forward limits) 

Off-On-Error 
The DMC-2x00 controller has a built in function which can turn off the motors under certain error 
conditions.  This function is know as ‘Off-On-Error”.  To activate the OE function for each axis, 
specify 1 for A,B,C and D axis.  To disable this function, specify 0 for the axes.  When this function is 
enabled, the specified motor will be disabled under the following 3 conditions: 

1.  The position error for the specified axis exceeds the limit set with the command, ER 

2.  The abort command is given 

3.  The abort input is activated with a low signal. 

NOTE: If the motors are disabled while they are moving, they may ‘coast’ to a stop because they are 
no longer under servo control. 

To re-enable the system, use the Reset (RS) or Servo Here (SH) command.   

Example 
OE 1,1,1,1 Enable off-on-error for A,B,C and D 
 OE 0,1,0,1 Enable off-on-error for B and D axes, Disable off-on-error for A and C 

Automatic Error Routine 
The #POSERR label causes the statements following to be automatically executed if error on any axis 
exceeds the error limit specified by ER.  The error routine must be closed with the RE command.  The 
RE command returns from the error subroutine to the main program. 

NOTE:  The Error Subroutine will be entered again unless the error condition is gone. 

Example 
Instruction Interpretation 
#A;JP #A;EN "Dummy" program 
#POSERR Start error routine on error 
MG "error" Send message 
SB 1 Fire relay 
STA Stop motor 
AMA After motor stops 
SHA Servo motor here to clear error 
RE Return to main program 

NOTE:  An applications program must be executing for the #POSERR routine to function. 



160  •  Chapter 7 Application Programming DMC-2X00  

Limit Switch Routine 
The DMC-2x00 provides forward and reverse limit switches which inhibit motion in the respective 
direction.  There is also a special label for automatic execution of a limit switch subroutine.  The 
#LIMSWI label specifies the start of the limit switch subroutine.  This label causes the statements 
following to be automatically executed if any limit switch is activated and that axis motor is moving in 
that direction.  The RE command ends the subroutine. 

The state of the forward and reverse limit switches may also be tested during the jump-on-condition 
statement.  The _LR condition specifies the reverse limit and _LF specifies the forward limit.  A,B,C, 
or D following LR or LF specifies the axis. The CN command can be used to configure the polarity of 
the limit switches. 

Example 
Instruction Interpretation 
#A;JP #A;EN Dummy Program 
#LIMSWI Limit Switch Utility 
v1=_LFA Check if forward limit 
v2=_LRA Check if reverse limit 
JP#LF,v1=0 Jump to #LF if forward 
JP#LR,v2=0 Jump to #LR if reverse 
JP#END Jump to end 
#LF #LF 
MG "FORWARD LIMIT" Send message 
STX;AMA Stop motion 
PR-1000;BGA;AMA Move in reverse 
JP#END End 
#LR #LR 
MG "REVERSE LIMIT" Send message 
STX;AMA Stop motion 
PR1000;BGA;AMA Move forward 
#END End 
RE Return to main program 

NOTE:  An applications program must be executing for #LIMSWI to function. 



DMC-2X00 Chapter 9 Troubleshooting   161  

Chapter 9 Troubleshooting 

Overview 
The following discussion may help you get your system to work. 

Potential problems have been divided into groups as follows: 

1. Installation 

2. Communication 

3. Stability and Compensation 

4. Operation 

The various symptoms along with the cause and the remedy are described in the following tables. 

Installation 
 

SYMPTOM CAUSE REMEDY 
Motor runs away when connected to amplifier with 
no additional inputs. 

Amplifier offset too 
large. 

Adjust amplifier offset 

Same as above, but offset adjustment does not stop 
the motor. 

Damaged amplifier. Replace amplifier. 

Controller does not read changes in encoder position. Wrong encoder 
connections. 

Check encoder wiring. 

Same as above Bad encoder Check the encoder signals.  
Replace encoder if necessary. 

Same as above Bad controller Connect the encoder to 
different axis input. If it works, 
controller failure.  Repair or 
replace. 

 



162  •  Chapter 9 Troubleshooting DMC-2X00  

Communication 
 

SYMPTOM CAUSE REMEDY 
Using terminal emulator, cannot 
communicate with controller. 

Selected comm. port incorrect Try another comport 

Same as above Selected baud rate incorrect Check to be sure that baud rate 
same as dip switch settings on 
controller, change as necessary. 

Stability 
 

SYMPTOM CAUSE REMEDY 
Motor runs away when the loop is 
closed. 

Wrong feedback polarity. Invert the polarity of  the loop by 
inverting the motor leads (brush type) 
or the encoder. 

Motor oscillates. Too high gain or too little 
damping. 

Decrease KI and KP.  Increase KD. 

Operation 
 

SYMPTOM CAUSE REMEDY 
Controller rejects command.  
Responded with a ? 

Anything. Interrogate the cause with TC or 
TC1. 

Motor does not complete move. Noise on limit switches stops the 
motor. 

To verify cause, check the stop 
code (SC).  If caused by limit 
switch noise, reduce noise. 

During a periodic operation, motor 
drifts slowly. 

Encoder noise  Interrogate the position 
periodically.  If controller states 
that the position is the same at 
different locations it implies 
encoder noise. Reduce noise. Use 
differential encoder inputs. 

Same as above. Programming error. Avoid resetting position error at 
end of move with SH command. 

 
 



DMC-2X00 Chapter 10 Theory of Operation   163  

Chapter 10 Theory of Operation 

Overview 
The following discussion covers the operation of motion control systems.  A typical motion control 
system consists of the elements shown in Fig 10.1.  

 

COMPUTER CONTROLLER DRIVER

MOTORENCODER

 
 
Figure 10.1 - Elements of Servo Systems 

The operation of such a system can be divided into three levels, as illustrated in Fig. 10.2.  The levels 
are: 

1.  Closing the Loop 

2.  Motion Profiling 

3.  Motion Programming 

The first level, the closing of the loop, assures that the motor follows the commanded position.  This is 
done by closing the position loop using a sensor.  The operation at the basic level of closing the loop 
involves the subjects of modeling, analysis, and design.  These subjects will be covered in the 
following discussions. 

The motion profiling is the generation of the desired position function.  This function, R(t), describes 
where the motor should be at every sampling period.  Note that the profiling and the closing of the loop 
are independent functions.  The profiling function determines where the motor should be and the 
closing of the loop forces the motor to follow the commanded position 



164  •  Chapter 10 Theory of Operation DMC-2X00  

The highest level of control is the motion program.  This can be stored in the host computer or in the 
controller.  This program describes the tasks in terms of the motors that need to be controlled, the 
distances and the speed. 

 

MOTION
PROGRAMMING

MOTION
PROFILING

CLOSED-LOOP
CONTROL

LEVEL

3

2

1

 
 
Figure 10.2 - Levels of Control Functions 

The three levels of control may be viewed as different levels of management. The top manager, the 
motion program, may specify the following instruction, for example. 

PR 6000,4000 

SP 20000,20000 

AC 200000,00000 

BG A 

AD 2000 

BG B 

EN 

This program corresponds to the velocity profiles shown in Fig. 10.3.  Note that the profiled positions 
show where the motors must be at any instant of time. 

Finally, it remains up to the servo system to verify that the motor follows the profiled position by 
closing the servo loop. 

The following section explains the operation of the servo system.  First, it is explained qualitatively, 
and then the explanation is repeated using analytical tools for those who are more theoretically 
inclined. 

 



DMC-2X00 Chapter 10 Theory of Operation   165  

Y  POSITION

X  POSITION

Y  VELOCITY

X  VELOCITY

TIME  
Figure 10.3 - Velocity and Position Profiles 

Operation of Closed-Loop Systems 
To understand the operation of a servo system, we may compare it to a familiar closed-loop operation, 
adjusting the water temperature in the shower.  One control objective is to keep the temperature at a 
comfortable level, say 90 degrees F.  To achieve that, our skin serves as a temperature sensor and 
reports to the brain (controller).  The brain compares the actual temperature, which is called the 
feedback signal, with the desired level of 90 degrees F. The difference between the two levels is called 
the error signal.  If the feedback temperature is too low, the error is positive, and it triggers an action 
which raises the water temperature until the temperature error is reduced sufficiently. 

The closing of the servo loop is very similar.  Suppose that we want the motor position to be at 90 
degrees.  The motor position is measured by a position sensor, often an encoder, and the position 
feedback is sent to the controller. Like the brain, the controller determines the position error, which is 
the difference between the commanded position of 90 degrees and the position feedback.  The 
controller then outputs a signal that is proportional to the position error.  This signal produces a 
proportional current in the motor, which causes a motion until the error is reduced.  Once the error 
becomes small, the resulting current will be too small to overcome the friction, causing the motor to 
stop. 

The analogy between adjusting the water temperature and closing the position loop carries further.  We 
have all learned the hard way, that the hot water faucet should be turned at the "right" rate.  If you turn 
it too slowly, the temperature response will be slow, causing discomfort.  Such a slow reaction is called 
overdamped response. 



166  •  Chapter 10 Theory of Operation DMC-2X00  

The results may be worse if we turn the faucet too fast.  The overreaction results in temperature 
oscillations.  When the response of the system oscillates, we say that the system is unstable.  Clearly, 
unstable responses are bad when we want a constant level. 

What causes the oscillations?  The basic cause for the instability is a combination of delayed reaction 
and high gain.  In the case of the temperature control, the delay is due to the water flowing in the pipes.  
When the human reaction is too strong, the response becomes unstable. 

Servo systems also become unstable if their gain is too high.  The delay in servo systems is between 
the application of the current and its effect on the position.  Note that the current must be applied long 
enough to cause a significant effect on the velocity, and the velocity change must last long enough to 
cause a position change.  This delay, when coupled with high gain, causes instability. 

This motion controller includes a special filter which is designed to help the stability and accuracy.  
Typically, such a filter produces, in addition to the proportional gain, damping and integrator.  The 
combination of the three functions is referred to as a PID filter. 

The filter parameters are represented by the three constants KP, KI and KD, which correspond to the 
proportional, integral and derivative term respectively. 

The damping element of the filter acts as a predictor, thereby reducing the delay associated with the 
motor response. 

The integrator function, represented by the parameter KI, improves the system accuracy.  With the KI 
parameter, the motor does not stop until it reaches the desired position exactly, regardless of the level 
of friction or opposing torque. 

The integrator also reduces the system stability.  Therefore, it can be used only when the loop is stable 
and has a high gain. 

The output of the filter is applied to a digital-to-analog converter (DAC). The resulting output signal in 
the range between +10 and -10 volts is then applied to the amplifier and the motor. 

The motor position, whether rotary or linear is measured by a sensor.  The resulting signal, called 
position feedback, is returned to the controller for closing the loop. 

The following section describes the operation in a detailed mathematical form, including modeling, 
analysis and design. 

System Modeling 
The elements of a servo system include the motor, driver, encoder and the controller.  These elements 
are shown in Fig. 10.4.  The mathematical model of the various components is given below. 

DIGITAL
FILTERΣ ZOH DAC

ENCODER

AMP MOTOR

CONTROLLER

R

C

X Y V E

P

 
Figure 10.4 - Functional Elements of a Motion Control System 



DMC-2X00 Chapter 10 Theory of Operation   167  

Motor-Amplifier 
The motor amplifier may be configured in three modes: 

1.  Voltage Drive 

2.  Current Drive 

3.  Velocity Loop 

The operation and modeling in the three modes is as follows: 

Voltage Drive 
The amplifier is a voltage source with a gain of Kv [V/V].  The transfer function relating the input 
voltage, V, to the motor position, P, is 

 ( )( )[ ]P V K K S ST STV t m e= + +1 1  

where 

 T RJ Km t= 2  [s] 

and 

 T L Re =  [s] 

and the motor parameters and units are 

Kt Torque constant [Nm/A] 

R Armature Resistance Ω 
J Combined inertia of motor and load [kg.m2] 
L Armature Inductance [H] 

When the motor parameters are given in English units, it is necessary to convert the quantities to MKS 
units.  For example, consider a motor with the parameters: 

 Kt = 14.16 oz - in/A = 0.1 Nm/A 

 R = 2 Ω 

 J = 0.0283 oz-in-s2 = 2.10-4 kg . m2 

 L = 0.004 H 

Then the corresponding time constants are 

 Tm = 0.04 sec 

and 

 Te = 0.002 sec 

Assuming that the amplifier gain is Kv = 4, the resulting transfer function is  

 P/V = 40/[s(0.04s+1)(0.002s+1)] 

Current Drive 
The current drive generates a current I, which is proportional to the input voltage, V, with a gain of Ka.  
The resulting transfer function in this case is 

 P/V = Ka Kt / Js2 



168  •  Chapter 10 Theory of Operation DMC-2X00  

where Kt and J are as defined previously.  For example, a current amplifier with Ka = 2 A/V with the 
motor described by the previous example will have the transfer function: 

 P/V = 1000/s2            [rad/V] 

If the motor is a DC brushless motor, it is driven by an amplifier that performs the commutation.  The 
combined transfer function of motor amplifier combination is the same as that of a similar brush 
motor, as described by the previous equations. 

Velocity Loop 
The motor driver system may include a velocity loop where the motor velocity is sensed by a 
tachometer and is fed back to the amplifier.  Such a system is illustrated in Fig. 10.5.  Note that the 
transfer function between the input voltage V and the velocity ω is: 

 ω /V = [Ka Kt/Js]/[1+Ka Kt Kg/Js] = 1/[Kg(sT1+1)] 

where the velocity time constant, T1, equals 

 T1 = J/Ka Kt Kg 

This leads to the transfer function 

 P/V = 1/[Kg s(sT1+1)] 

 

Σ Ka Kt/Js

Kg

V

 
 
Figure 10.5 - Elements of velocity loops 

The resulting functions derived above are illustrated by the block diagram of Fig. 10.6. 

 



DMC-2X00 Chapter 10 Theory of Operation   169  

Kv
1/Ke

(STm+1)(STe+1)
1
S

V E W P

VOLTAGE SOURCE

Ka
Kt
JS

1
S

V I W P

CURRENT SOURCE

1
S

V W P

VELOCITY LOOP

1
Kg(ST1+1)

 
 
Figure 10.6 - Mathematical model of the motor and amplifier in three operational modes 

Encoder 
The encoder generates N pulses per revolution.  It outputs two signals, Channel A and B, which are in 
quadrature.  Due to the quadrature relationship between the encoder channels, the position resolution is 
increased to 4N quadrature counts/rev. 

The model of the encoder can be represented by a gain of 

 Kf = 4N/2π       [count/rad] 

For example, a 1000 lines/rev encoder is modeled as 

 Kf = 638 



170  •  Chapter 10 Theory of Operation DMC-2X00  

DAC 
The DAC or D-to-A converter converts a 16-bit number to an analog voltage.  The input range of the 
numbers is 65536 and the output voltage range is +/-10V or 20V.  Therefore, the effective gain of the 
DAC is 

 K= 20/65536 = 0.0003           [V/count]  

Digital Filter 
The digital filter has three elements in series: PID, low-pass and a notch filter.  The transfer function of 
the filter.  The transfer function of the filter elements are: 

 

 PID  D(z) = 
K Z A

Z
CZ

Z
( )−

+
− 1

 

 Low-pass L(z) = 
1−

−
B

Z B
 

 

 Notch  N(z) = 
( )( )
( )( )

Z z Z z
Z p Z p

− −
− −

 

 

The filter parameters, K, A, C and B are selected by the instructions KP, KD, KI and PL, respectively.  
The relationship between the filter coefficients and the instructions are: 

K = (KP + KD) ⋅ 4 
A = KD/(KP + KD) 
C = KI/2 
B = PL 

The PID and low-pass elements are equivalent to the continuous transfer function G(s). 

 G(s) = (P + sD + I/s) ∗ a/(S+a) 

 P =  4KP 

 D = 4T ⋅ KD 

 I =  KI/2T 

 a = 1/T   ln = (1/B) 

where T is the sampling period. 



DMC-2X00 Chapter 10 Theory of Operation   171  

For example, if the filter parameters of the DMC-2x00 are 

 KP = 4 

 KD = 36 

 KI = 2 

 PL = 0.75 

 T = 0.001 s 

the digital filter coefficients are 

 K = 160 

 A = 0.9 

 C = 1 

 a = 250 rad/s 

and the equivalent continuous filter, G(s), is 

 G(s) = [16 + 0.144s + 1000/s} ∗ 250/ (s+250) 

 

The notch filter has two complex zeros, Z and z, and two complex poles, P and p. 

The effect of the notch filter is to cancel the resonance affect by placing the complex zeros on top of 
the resonance poles.  The notch poles, P and p, are programmable and are selected to have sufficient 
damping.  It is best to select the notch parameters by the frequency terms.  The poles and zeros have a 
frequency in Hz, selected by the command NF.  The real part of the poles is set by NB and the real part 
of the zeros is set by NZ. 

The simplest procedure for setting the notch filter is to identify the resonance frequency and set NF to 
the same value.  Set NB to about one half of NF and set NZ to a low value between zero and 5. 

ZOH 
The ZOH, or zero-order-hold, represents the effect of the sampling process, where the motor command 
is updated once per sampling period.  The effect of the ZOH can be modeled by the transfer function 

 H(s) = 1/(1+sT/2) 

If the sampling period is T = 0.001, for example, H(s) becomes: 

 H(s) = 2000/(s+2000) 

However, in most applications, H(s) may be approximated as one. 

This completes the modeling of the system elements.  Next, we discuss the system analysis. 



172  •  Chapter 10 Theory of Operation DMC-2X00  

System Analysis 
To analyze the system, we start with a block diagram model of the system elements.  The analysis 
procedure is illustrated in terms of the following example. 

Consider a position control system with the DMC-2x00 controller and the following parameters: 

Kt = 0.1 Nm/A Torque constant 

J = 2.10-4 kg.m2 System moment of inertia 

R = 2 Ω Motor resistance 

Ka = 4 A/V Current amplifier gain 

KP = 12.5  Digital filter gain 
KD = 245  Digital filter zero 
KI = 0  No integrator 
N = 500 Counts/rev Encoder line density 
T = 1 ms Sample period 

The transfer function of the system elements are: 

Motor 

 M(s) = P/I = Kt/Js2 = 500/s2  [rad/A] 

Amp 

 Ka = 4  [Amp/V] 

DAC 

 Kd = 0.0003  [V/count] 

Encoder 

 Kf = 4N/2π = 318 [count/rad] 

ZOH 

 2000/(s+2000) 

Digital Filter 

 KP = 12.5,  KD = 245,  T = 0.001 

Therefore, 

 D(z) = 1030 (z-0.95)/Z 

Accordingly, the coefficients of the continuous filter are: 

 P = 50 

 D = 0.98 

The filter equation may be written in the continuous equivalent form:  

 G(s) = 50 + 0.98s = .098 (s+51)  

The system elements are shown in Fig. 10.7. 

 



DMC-2X00 Chapter 10 Theory of Operation   173  

Σ 50+0.980s

318

V

ENCODER

500
S2

FILTER

2000
S+2000

0.0003 4

ZOH DAC AMP MOTOR

 
Figure 10.7  - Mathematical model of the control system 

The open loop transfer function, A(s), is the product of all the elements in the loop. 

 A = 390,000 (s+51)/[s2(s+2000)] 

To analyze the system stability, determine the crossover frequency, ωc at which A(j ωc) equals one.  
This can be done by the Bode plot of A(j ωc), as shown in Fig. 10.8. 

 

1

4

0.1

50 200 2000 W (rad/s)

Magnitude

 
Figure 10.8 - Bode plot of the open loop transfer function 

For the given example, the crossover frequency was computed numerically resulting in 200 rad/s. 

Next, we determine the phase of A(s) at the crossover frequency. 

 A(j200) = 390,000 (j200+51)/[(j200)2 . (j200 + 2000)] 

 α = Arg[A(j200)] = tan-1(200/51)-180° -tan-1(200/2000) 

 α = 76° - 180° - 6° =  -110° 



174  •  Chapter 10 Theory of Operation DMC-2X00  

Finally, the phase margin, PM, equals 

 PM = 180° + α = 70° 

As long as PM is positive, the system is stable.  However, for a well damped system, PM should be 
between 30 degrees and 45 degrees.  The phase margin of 70 degrees given above indicated 
overdamped response. 

Next, we discuss the design of control systems. 

System Design and Compensation 
The closed-loop control system can be stabilized by a digital filter, which is preprogrammed in the 
DMC-2x00 controller.  The filter parameters can be selected by the user for the best compensation.  
The following discussion presents an analytical design method. 

The Analytical Method 
The analytical design method is aimed at closing the loop at a crossover frequency, ωc, with a phase 
margin PM.  The system parameters are assumed known.  The design procedure is best illustrated by a 
design example. 

Consider a system with the following parameters: 

Kt Nm/A Torque constant 

J = 2.10-4 kg.m2 System moment of inertia 

R = 2 Ω Motor resistance 

Ka = 2 A/V Current amplifier gain 

N = 1000 Counts/rev Encoder line density 

The DAC of the DMC-2x00 outputs +/-10V for a 14-bit command of +/-8192 counts. 

The design objective is to select the filter parameters in order to close a position loop with a crossover 
frequency of ωc = 500 rad/s and a phase margin of 45 degrees. 

The first step is to develop a mathematical model of the system, as discussed in the previous system. 

Motor 

 M(s) = P/I = Kt/Js2 = 1000/s2 

Amp 

 Ka = 2            [Amp/V] 

DAC 

 Kd = 10/32768 = .0003 

Encoder 

 Kf = 4N/2π = 636 

ZOH 

 H(s) = 2000/(s+2000) 

Compensation Filter 

 G(s) = P + sD 



DMC-2X00 Chapter 10 Theory of Operation   175  

The next step is to combine all the system elements, with the exception of G(s), into one function, L(s). 

 L(s) = M(s) Ka Kd Kf H(s) =3.17∗106/[s2(s+2000)] 

Then the open loop transfer function, A(s), is 

 A(s) = L(s) G(s) 

Now, determine the magnitude and phase of L(s) at the frequency ωc = 500. 

 L(j500) = 3.17∗106/[(j500)2 (j500+2000)] 

This function has a magnitude of 

 |L(j500)| = 0.00625 

and a phase 

 Arg[L(j500)] = -180° - tan-1(500/2000) = -194° 

G(s) is selected so that A(s) has a crossover frequency of 500 rad/s and a phase margin of 45 degrees.  
This requires that 

 |A(j500)| = 1 

 Arg [A(j500)] = -135° 

However, since 

 A(s) = L(s) G(s) 

then it follows that G(s) must have magnitude of 

 |G(j500)| = |A(j500)/L(j500)| = 160 

and a phase 

 arg [G(j500)] = arg [A(j500)] - arg [L(j500)] = -135° + 194°  = 59° 

In other words, we need to select a filter function G(s) of the form 

 G(s) = P + sD 

so that at the frequency ωc =500, the function would have a magnitude of 160 and a phase lead of 59 
degrees. 

These requirements may be expressed as: 

 |G(j500)| = |P + (j500D)| = 160 

and 

 arg [G(j500)] = tan-1[500D/P] = 59° 

The solution of these equations leads to:  

 P = 160cos 59° = 82.4  

 500D = 160sin 59° = 137 

Therefore, 

 D = 0.274 

and 

 G = 82.4 + 0.2744s 



176  •  Chapter 10 Theory of Operation DMC-2X00  

The function G is equivalent to a digital filter of the form: 

 D(z) = 4KP + 4KD(1-z-1) 

where 

 P = 4 ∗ KP  

 D = 4 ∗ KD ∗ T 

and 

4 ∗ KD = D/T 

Assuming a sampling period of T=1ms, the parameters of the digital filter are:  

 KP = 20.6 

 KD = 68.6 

The DMC-2x00 can be programmed with the instruction: 

 KP 20.6 

 KD 68.6 

In a similar manner, other filters can be programmed.  The procedure is simplified by the following 
table, which summarizes the relationship between the various filters. 

Equivalent Filter Form 
  DMC-2x00  

Digital  D(z) =[K(z-A/z) + Cz/(z-1)]∗ (1-B)/(Z-B) 

 

Digital  D(z) = [4 KP + 4 KD(1-z-1) + KI/2(1-z-1)] ∗(1-B)/(Z-B) 

KP, KD, KI, PL K = (KP + KD) ⋅ 4 

  A = KD/(KP+KD) 

  C = KI/2 

  B = PL 

 

Continuous G(s) = (P + Ds + I/s) ∗ a/S+a 

PID, T  P = 4 KP  

  D = 4 T*KD 

  I = KI/2T 

  a = 1/T ln (1/PL) 



DMC-2X00 Appendices   177  

Appendices 

Electrical Specifications 

Servo Control 
ACMD Amplifier Command:  +/-10 volt analog signal.  Resolution 16-bit DAC or 

0.0003 volts.  3 mA maximum 

A+,A-,B+,B-,IDX+,IDX- Encoder and 
Auxiliary 

TTL compatible, but can accept up to +/-12 volts.  
Quadrature phase on CHA, CHB.  Can accept single-
ended (A+,B+ only) or differential (A+,A-,B+,B-).  
Maximum A, B edge rate: 12 MHz.  Minimum IDX pulse 
width: 80 nsec. 

Stepper Control 
Pulse TTL (0-5 volts) level at 50% duty cycle.  3,000,000  

pulses/sec maximum frequency 

Direction TTL (0-5 volts) 

Input / Output 
Limit Switch Inputs, Home Inputs.  

IN[1] thru IN[8] Uncommitted Inputs and 
Abort Input 

IN[9] thru IN[16] Uncommitted Inputs  
(DMC-2x50 through DMC-2x80 only) 

2.2K ohm in series with opto-isolator.  Active high or low 
requires at least 1mA to activate.  Once activated, the 
input requires the current to go below 0.5ma.  All Limit 
Switch and Home inputs use one common voltage 
(LSCOM) which can accept up to 24 volts.  Voltages 
above 24 volts require an additional resistor. 

   ≥ 1 mA = ON;     ≤ 0.5 mA = OFF 

AN[1] thru AN[8] Analog Inputs: Standard configuration is +/-10 volts.  12-Bit Analog-to-
Digital converter.  16-bit optional. 

OUT[1] thru OUT[8] Outputs: TTL 

OUT[9] thru OUT[16] Outputs: 

(DMC-2x50 through DMC-2x80 only) 

TTL 

IN[81], IN[82] Auxiliary Encoder Inputs for A (X) axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 



178  •  Appendices DMC-2X00  

IN[83], IN[84] 

(DMC-2x20 through DMC-2x80 only) 

Auxiliary Encoder Inputs for B (Y) axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 

IN[85], IN[86] 

(DMC-2x30 through DMC-2x80 only) 

Auxiliary Encoder Inputs for C (Z) axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 

IN[87], IN[88] 

(DMC-2x40 through DMC-2x80 only) 

Auxiliary Encoder Inputs for D (W) axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 

IN[89], IN[90] 

(DMC-2x50 through DMC-2x80 only) 

Auxiliary Encoder Inputs for E axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 

IN[91], IN[92] 

(DMC-2x60 through DMC-2x80 only) 

Auxiliary Encoder Inputs for F axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 

IN[93], IN[94] 

(DMC-2x70 through DMC-2x80 only) 

Auxiliary Encoder Inputs for G axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 

IN[95], IN[96] 

(DMC-2x80 only) 

Auxiliary Encoder Inputs for H axis.  Line Receiver 
Inputs - accepts differential or single ended voltages with 
voltage range of +/- 12 volts. 

Power 
+5V 1.1 A 

+12V 40 mA 

-12V 40 mA 

Performance Specifications 

Minimum Servo Loop Update Time: 
 Normal Fast Firmware 

DMC-2x10  250 µsec 125 µsec 

DMC-2x20  250 µsec 125 µsec 

DMC-2x30 375 µsec 250 µsec 

DMC-2x40  375 µsec 250 µsec 

DMC-2x50 500 µsec 375 µsec 

DMC-2x60 500 µsec 375 µsec 

DMC-2x70 625 µsec 500 µsec 

DMC-2x80 625 µsec 500 µsec 

   

Position Accuracy: +/-1 quadrature count  



DMC-2X00 Appendices   179  

Velocity Accuracy:   

   Long Term Phase-locked, better than .005%  

   Short Term System dependent  

Position Range: +/-2147483647 counts per move  

Velocity Range:  Up to 12,000,000 counts/sec 
servo;  

3,000,000 pulses/sec-stepper 

 

Velocity Resolution: 2 counts/sec  

Motor Command Resolution: 16 bit or 0.0003 V    

Variable Range: +/-2 billion  

Variable Resolution: 1 ⋅ 10-4  

Array Size: 8000 elements, 30 arrays  

Program Size: 1000 lines x 80 characters  

Fast Update Rate Mode  
The DMC-2x00 can operate with much faster servo update rates.  This mode is known as 'fast mode' 
and allows the controller to operate with the following update rates: 
DMC-2x10, DMC-2x20 125 usec 
DMC-2x30, DMC-2x40 250 usec 
DMC-2x50, DMC-2x60 375 usec 
DMC-2x70, DMC-2x80 500 usec 

 
In order to run the DMC-2x00 motion controller in fast mode, the fast firmware must be uploaded.  
This can be done through the Galil terminal software such as DMCTERM and WSDK.  The fast 
firmware is included with the original DMC-2x00 utilities.  To set the update rate use command TM. 

When the controller is operating with the fast firmware, the following functions are disabled: 

Gearing mode 

Ecam mode  

Pole (PL) 

Analog Feedback (AF) 

Stepper Motor Operation (MT 2,-2,2.5,-2.5) 

Trippoints in thread 2-8 

DMA channel 

Tell Velocity Interrogation Command (TV) 



180  •  Appendices DMC-2X00  

Connectors for DMC-2x00 Main Board 

DMC-2x00 Axes A-D High Density Connector 
  
1    Analog Ground 51  nc 
2    gnd 52  gnd 
3    5v 53  5v 
4    error output 54  limit common 
5    reset 55  home W 
6    encoder-compare output 56  reverse limit W 
7    gnd 57  forward limit W 
8    gnd 58  home Z 
9    motor command W 59  reverse limit Z 
10  sign W / dir W 60  forward limit Z 
11  pwm W / step W 61  home Y 
12  motor command Z 62  reverse limit Y 
13  sign Z / dir Z 63  forward limit Y 
14  pwm Z / step Y 64  home X 
15  motor command Y 65  reverse limit X 
16  sign Y / dir Y 66  forward limit X 
17  pwm Y / step Y 67  gnd 
18  motor command X 68  5v 
19  sign X / dir X 69  input common 
20  pwm X / step X 70  latch X 
21  amp enable W 71  latch Y 
22  amp enable Z 72  latch Z 
23  amp enable y 73  latch W 
24  amp enable X 74  input 5 
25  A+X 75  input 6 
26  A- X 76  input 7 
27  B+X 77  input 8 
28  B-X 78  abort 
29  I+X 79  output 1 
30  I-X 80  output 2 
31  A+Y 81  output 3 
32  A-Y 82  output 4 
33  B+Y 83  output 5 
34  B-Y 84  output 6 
35  I+Y 85  output 7 
36  I-Y 86  output 8 
37  A+Z 87  5v pos 
38  A-Z 88  gnd 
39  B+Z 89  gnd 
40  B-Z 90  gnd 
41  I+Z 91  analog in 1 
42  I-Z 92  analog in 2 
43  A+W 93  analog in 3 
44  A-W 94  analog in 4 
45  B+W 95  analog in 5 



DMC-2X00 Appendices   181  

46  B-W 96  analog in 6 
47  I+W 97  analog in 7 
48  I-W 98  analog in 8 
49  +12V 99  -12v 
50  +12V 100  -12v 

 

DMC-2x00 Axes E-H High Density Connector 
  
1    nc 51  nc 
2    gnd 52  gnd 
3    5v 53  5v 
4    error output 54  limit common 
5    reset 55  home H 
6    encoder-compare output 56  reverse limit H 
7    gnd 57  forward limit H 
8    gnd 58  home G 
9    motor command H 59  reverse limit G 
10  sign H / dir H 60  forward limit G 
11  pwm H / step H 61  home F 
12  motor command G 62  reverse limit F 
13  sign G / dir G 63  forward limit F 
14  pwm G / step G 64  home E 
15  motor command F 65  reverse limit E 
16  sign F / dir F 66  forward limit E 
17  pwm F / step F 67  gnd 
18  motor command E 68  5v 
19  sign E / dir E 69  input common 
20  pwm E / step E 70  latch E 
21  amp enable H 71  latch F 
22  amp enable G 72  latch G 
23  amp enable F 73  latch H 
24  amp enable E 74  input 13 
25  A+E 75  input 14 
26  A- E 76  input 15 
27  B+E 77  input 16 
28  B-E 78  abort 
29  I+E 79  output 9 
30  I-E 80  output 10 
31  A+F 81  output 11 
32  A-F 82  output 12 
33  B+F 83  output 13 
34  B-F 84  output 14 
35  I+F 85  output 15 
36  I-F 86  output 16 
37  A+G 87  5v  
38  A-G 88  gnd 
39  B+G 89  gnd 
40  B-G 90  gnd 
41  I+G 91  nc 
42  I-G 92  nc 



182  •  Appendices DMC-2X00  

43  A+H 93  nc 
44  A-H 94  nc 
45  B+H 95  nc 
46  B-H 96  nc 
47  I+H 97  nc 
48  I-H 98  nc 
49  +12V 99  -12v 
50  +12V 100  -12v 

DMC-2x00 Auxiliary Encoder 36 Pin High Density Connector 
  
1    5v 19  5v 
2    gnd 20  gnd 
3    +aaX 21  +aaE 
4    -aaX 22  -aaE 
5     +abX 23  +abE 
6     -abX 24  -abE 
7     +aaY 25  +aaF 
8     -aaY 26  -aaF 
9     +abY 27  +abF 
10  -abY 28  -abF 
11  +aaZ 29  +aaG 
12  -aaZ 30  -aaG 
13  +abZ 31  +abG 
14  -abZ 32  -abG 
15  +aaW 33  +aaH 
16  -aaW 34  -aaH 
17  +abW 35  +abH 
18  -abW 36  -abH 

DMC-2x00 Extended I/O 80 Pin High Density Connector 
Pin Signal Block Bit  @IN[n], @OUT[n] Bit No 

1 I/O 8 72 7 
2 I/O 9 73 0 
3 I/O 8 71 6 
4 I/O 9 74 1 
5 I/O 8 70 5 
6 I/O 9 75 2 
7 I/O 8 69 4 
8 I/O 9 76 3 
9 I/O 8 68 3 

10 I/O 9 77 4 
11 I/O 8 67 2 
12 I/O 9 78 5 
13 I/O 8 66 1 
14 I/O 9 79 6 
15 I/O 8 65 0 
16 I/O 9 80 7 
17 I/O 7 64 7 
18 GND -- -- GND 



DMC-2X00 Appendices   183  

19 I/O 7 63 6 
20 GND -- -- GND 
21 I/O 7 62 5 
22 GND -- -- GND 
23 I/O 7 61 4 
24 GND -- -- GND 
25 I/O 7 60 3 
26 GND -- -- GND 
27 I/O 7 59 2 
28 GND -- -- GND 
29 I/O 7 58 1 
30 GND -- -- GND 
31 I/O 7 57 0 
32 I/O 6 56 7 
33 I/O 6 55 6 
34 I/O 6 54 5 
35 I/O 6 53 4 
36 I/O 6 52 3 
37 I/O 6 51 2 
38 I/O 6 50 1 
39 I/O 6 49 0 
40 +5V -- -- +5V 
41 I/O 4 40 7 
42 I/O 5 41 0 
43 I/O 4 39 6 
44 I/O 5 42 1 
45 I/O 4 38 5 
46 I/O 5 43 2 
47 I/O 4 37 4 
48 I/O 5 44 3 
49 I/O 4 36 3 
50 I/O 5 45 4 
51 I/O 4 35 2 
52 I/O 5 46 5 
53 I/O 4 34 1 
54 I/O 5 47 6 
55 I/O 4 33 0 
56 I/O 5 48 7 
57 I/O 3 32 7 
58 GND -- -- GND 
59 I/O 3 31 6 
60 GND -- -- GND 
61 I/O 3 30 5 
62 GND - -- GND 
63 I/O 3 29 4 
64 GND -- -- GND 
65 I/O 3 28 3 
66 GND -- -- GND 
67 I/O 3 27 2 
68 GND -- -- GND 
69 I/O 3 26 1 
70 GND -- -- GND 



184  •  Appendices DMC-2X00  

71 I/O 3 25 0 
72 I/O 2 24 7 
73 I/O 2 23 6 
74 I/O 2 22 5 
75 I/O 2 21 4 
76 I/O 2 20 3 
77 I/O 2 19 2 
78 I/O 2 18 1 
79 I/O 2 17 0 
80 +5V -- -- +5V 

 

RS-232-Main Port   
Standard connector and cable, 9Pin  

Pin Signal 
1 CTS – OUTPUT 
2 Transmit data-output 
3 Receive data-input 
4 RTS – input 
5 Gnd 
6 CTS – output 
7 RTS – input 
8 CTS – output 
9 Nc 

RS-232-Auxiliary Port 
Standard connector and cable, 9Pin 

Pin Signal 
1 CTS – input 

2 Transmit data-input 

3 Receive data-output 

4 RTS – output 

5 Gnd 

6 CTS – input 

7 RTS – output 

8 CTS – input 

9 5v 

USB - In     USB - Out 
Series B, 4 pos     Series A, 8 pos 

Connector: Amp # 787780-1   Connector: Amp # 787617-1 



DMC-2X00 Appendices   185  

Ethernet 
100 BASE-T/10 BASE-T - Kycon GS-NS-88-3.5 

Pin Signal 
1 TXP 

2 TXN 

3 RXP 

4 NC 

5 NC 

6 RXN 

7 NC 

8 NC 

10 BASE-2-  AMP 227161-7 

10 BASE-F- HP HFBR-1414 (TX, Transmitter) 

        HP HFBR-2416 (RX, Receiver)  

 Cable Connections for DMC-2x00 
The DMC-2x00 requires the transmit, receive, and ground for slow communication rates. (i.e. 1200 
baud)  For faster rates the handshake lines are required.  The connection tables below contain the 
handshake lines.  These descriptions and tables are for RS-232 only.  RS-422 is available on request. 

Standard RS-232 Specifications 

25 pin Serial Connector (Male, D-type) 
This table describes the pinout for standard serial ports found on most computers. 

Pin Number Function 
1 NC 

2 Transmitted Data 

3 Received Data 

4 Request to Send 

5 Clear to Send 

6 Data Set Ready 

7 Signal Ground 

8 Carrier Detect 

9 +Transmit Current Loop Return 

10 NC 

11 -Transmit Current Loop Data 

12 NC 

13 NC 

14 NC 



186  •  Appendices DMC-2X00  

15 NC 

16 NC 

17 NC 

18 +Receive Current Loop Data 

19 NC 

20 Data Terminal Ready 

21 NC 

22 Ring Indicator 

23 NC 

24 NC 

25 -Receive Current Loop Return 

9 Pin Serial  Connector (Male, D-type) 
Standard serial port connections found on most computers. 

PIN NUMBER FUNCTION 

1 Carrier Detect 

2 Receive Data 

3 Transmit Data 

4 Data Terminal Ready 

5 Signal Ground 

6 Data Set Ready 

7 Request to Send 

8 Clear to Send 

9 Ring Indicator 

DMC-2x00 Serial Cable Specifications 

Cable to Connect Computer 25 pin to Main Serial Port 
25 Pin (Male - computer) 9 Pin (female - controller) 
8  (Carrier Detect) 1 

3  (Receive Data) 2 

2  (Transmit Data) 3 

20  (Data Terminal Ready) 4 

7  (Signal Ground) 5 

Controller Ground 9 

Cable to Connect Computer 9 pin to Main Serial Port Cable (9 pin) 
9 Pin  (FEMALE - Computer) 9 Pin (FEMALE - Controller) 

1  (Carrier Detect) 1 

2  (Receive Data) 2 

3  (Transmit Data) 3 



DMC-2X00 Appendices   187  

4  (Data Terminal Ready) 4 

5  (Signal Ground) 5 

Controller Ground 9 

Cable to Connect Computer 25 pin to Auxiliary Serial Port Cable (9 
pin) 

25 Pin (Male - terminal) 9 Pin (male - controller) 
20 (Data Terminal Ready) 1 

2  (Transmit Data) 2 

3  (Receive Data) 3 

8  (Carrier Detect) 4 

7  (Signal Ground) 5 

Controller +5V 9 

Cable to Connect Computer 9 pin to Auxiliary Serial Port Cable (9 pin) 
9 Pin  (FEMALE - terminal) 9 Pin (MALE - Controller) 
4  (Data Terminal Ready) 1 

3  (Transmit Data) 2 

2  (Receive Data) 3 

1  (Carrier Detect) 4 

5  (Signal Ground) 5 

Controller +5V 9 



188  •  Appendices DMC-2X00  

Pin-Out Description for DMC-2x00 
Outputs 

Analog Motor Command +/- 10 volt range signal for driving amplifier.  In servo mode, 
motor command output is updated at the controller sample rate.  In 
the motor off mode, this output is held at the OF command level. 

Amp Enable Signal to disable and enable an amplifier.  Amp Enable goes low 
on Abort and OE1. 

PWM/STEP OUT PWM/STEP OUT is used for directly driving power bridges for 
DC servo motors or for driving step motor amplifiers.  For servo 
motors:  If you are using a conventional amplifier that accepts a 
+/-10 volt analog signal, this pin is not used and should be left 
open.  The PWM output is available in two formats:  Inverter and 
Sign Magnitude.  In the Inverter mode, the PWM signal is .2% 
duty cycle for full negative voltage, 50% for 0 voltage and 99.8% 
for full positive voltage (25kHz switching frequency).  In the Sign 
Magnitude Mode (Jumper SM), the PWM signal is 0% for 0 
voltage, 99.6% for full voltage and the sign of the Motor 
Command is available at the sign output (50kHz switching 
frequency). 

PWM/STEP OUT For step motors:  The STEP OUT pin produces a series of pulses 
for input to a step motor driver.  The pulses may either be low or 
high.  The pulse width is 50%.  Upon Reset, the output will be low 
if the SM jumper is on.  If the SM jumper is not on, the output will 
be tristate. 

Sign/Direction Used with PWM signal to give the sign of the motor command for 
servo amplifiers or direction for step motors. 

Error The signal goes low when the position error on any axis exceeds 
the value specified by the error limit command, ER. 

Output 1-Output 8 

Output 9-Output 16 

(DMC-2x50 thru 2x80 

 

These 8 TTL outputs are uncommitted and may be designated by 
the user to toggle relays and trigger external events.  The output 
lines are toggled by Set Bit, SB, and Clear Bit, CB, instructions.  
The OP instruction is used to define the state of all the bits of the 
Output port. 

Inputs  
Encoder, A+, B+ Position feedback from incremental encoder with two channels in 

quadrature, CHA and CHB.  The encoder may be analog or TTL.  
Any resolution encoder may be used as long as the maximum 
frequency does not exceed 12,000,000 quadrature states/sec.  The 
controller performs quadrature decoding of the encoder signals 
resulting in a resolution of quadrature counts (4 x encoder cycles). 
NOTE:  Encoders that produce outputs in the format of pulses and 
direction may also be used by inputting the pulses into CHA and 
direction into Channel B and using the CE command to configure 
this mode. 



DMC-2X00 Appendices   189  

Encoder Index, I+ Once-Per-Revolution encoder pulse.  Used in Homing sequence or 
Find Index command to define home on an encoder index. 

Encoder, A-, B-, I- Differential inputs from encoder.  May be input along with CHA, 
CHB for noise immunity of encoder signals.  The CHA- and CHB-
inputs are optional. 

Auxiliary Encoder, Aux A+, 
Aux B+, Aux I+, Aux A-, 
Aux B-, Aux I- 

Inputs for additional encoder.  Used when an encoder on both the 
motor and the load is required.  Not available on axes configured 
for step motors. 

Abort A low input stops commanded motion instantly without a 
controlled deceleration.  Also aborts motion program. 

Reset A low input resets the state of the processor to its power-on 
condition.  The previously saved state of the controller, along with 
parameter values, and saved sequences are restored. 

Forward Limit Switch When active, inhibits motion in forward direction.  Also causes 
execution of limit switch subroutine, #LIMSWI.  The polarity of 
the limit switch may be set with the CN command. 

Reverse Limit Switch When active, inhibits motion in reverse direction.  Also causes 
execution of limit switch subroutine, #LIMSWI.  The polarity of 
the limit switch may be set with the CN command. 

Home Switch Input for Homing (HM) and Find Edge (FE) instructions.  Upon 
BG following HM or FE, the motor accelerates to slew speed.  A 
transition on this input will cause the motor to decelerate to a stop. 
The polarity of the Home Switch may be set with the CN 
command. 

Input 1 - Input 8 isolated 

Input 9 - Input 16 isolated 

 

 

Uncommitted inputs.  May be defined by the user to trigger 
events.  Inputs are checked with the Conditional Jump instruction 
and After Input instruction or Input Interrupt. Input 1 is latch A, 
Input 2 is latch B, Input 3 is latch C and Input 4 is latch D if the 
high speed position latch function is enabled. 

Latch High speed position latch to capture axis position within 20 
nanoseconds on occurrence of latch signal.  AL command arms 
latch.  Input 1 is latch A, Input 2 is latch B, Input 3 is latch C and 
Input 4 is latch D.  Input 9 is latch E, input 10 is latch F, input 11 
is latch G, input 12 is latch H. 

 



190  •  Appendices DMC-2X00  

Jumper Description for DMC-2x00 
 

Jumper Label Function (If jumpered) 
JP5 MB SMX For each axis, the SM jumper selects the SM 

 SMY magnitude mode for servo motors or selects 

 SMZ stepper motors.  If you are using stepper 

 SMW motors, SM must always be jumpered.  The Analog 
command is not valid with SM jumpered. 

JP7 MB SM E  

 SM F  

 SM G  

 SM H  

 OPT Reserved 

JP1 MB MRST Master Reset enable.  Returns controller to factory default 
settings and erases EEPROM. Requires power-on or RESET 
to be activated. 

JP 3 DB for DMC-2000 
JP4 DB for DMC-2100/2200 

UPGRADE Used to upgrade controller firmware when resident firmware 
is corrupt. 

JP4 DB for DMC-2000 
JP 5 for DMC-2100/2200 

AUX Serial Port Configuration for RS-232/RS-422 

JP3 MAIN Main Serial Port configuration for RS-232/RS-422 

  NOTE: MB denotes motherboard.  DB denotes daughter board. 



DMC-2X00 Appendices   191  

Dimensions for DMC-2x00 

 
 



192  •  Appendices DMC-2X00  

Accessories and Options 
DMC-20x0 1- 8 axis motion controllers where x specifies the number of axes 
                  -16 16-Bit ADC Option for analog inputs 
CABLE-100-1M 100-pin high density cable, 1 meter 
CABLE-100-4M 100-pin high density cable, 4 meter 
CABLE-80-1M 80-pin high density cable, 1 meter 
CABLE-80-4M 80-pin high density cable, 4 meter 
CABLE-36-1M 36-pin high density cable, 1 meter 
CABLE-36-4M 36-pin high density cable, 4 meter 
CABLE-USB-2M USB cable, 2 meter 
CABLE-USB-3M USB cable, 3 meter 
CB-50-100 50-pin to 100-pin converter board, includes two 50-pin ribbon cables  
CB-50-80 50-pin to 80-pin converter board, includes two 50-pin ribbon cables  
ICM-1900 Interconnect module 
                -LAEN Option for ICM-1900 

Provides Active Low Amplifier Enable Signal  
                -OPTO Option for ICM-1900 

Provides Opto0isolation for digital outputs 
                -OPTOHC Option for ICM-1900 

Provides High Current Opto-isolation for  digital outputs 
AMP-19x0 Interconnect module with 1 - 4 brush motor amplifiers where x specifies the number 

of amplifiers. 
                -OPTO Option for AMP-19x0 

Provides Opto0isolation for digital outputs 
                -OPTOHC Option for AMP-19x0 

Provides High Current Opto-isolation for  digital outputs 
ICM-2900 Interconnect module with detachable screw terminal 
                -LAEN Option for ICM-2900 

Provides Active Low Amplifier Enable Signal  
                -FL Option for ICM-2900 where the ICM-2900 includes flanges for rack mounting  
                -ST ICM-2900 module with screw terminal  
                -OPTO Option for AMP-19x0 

Provides Opto-isolation for digital outputs 
                -OPTOHC Option for AMP-19x0 

Provides High Current Opto-isolation for  digital outputs 
Galil CD-ROM / Utilities.  
Includes the following: 
                          
            DMCWIN16 
            DMCWIN32 
                 SETUP16 
                 SETUP32 
                 C KIT 

 
 
 
Windows 3.x Terminal 
Windows 95 / 98 / NT Terminal 
Setup Utility for Window 3.x 
Setup Utility for Windows 95/98/NT 
C-Programmers Kit 

WSDK-16 Servo Design Kit for Windows 3.x 
WSDK-32 Servo Design Kit for Windows 95 / 98 / NT 
VBX Tool Kit Visual BasicTM Tool Kit (includes VBXs and OCXs) 
CAD-to-DMC AutoCADR DXF translator 
MCS Motion Control Selector.  Utility for motor / amplifier sizing. 
HPGL HPGL translator 



DMC-2X00 Appendices   193  

ICM-2900 Interconnect Module 
The ICM-2900 interconnect module provides easy connections between the Optima series controllers 
and other system elements, such as amplifiers, encoders, and external switches.  The ICM- 2900 
accepts the 100-pin main cable and provides terminal blocks for connections.  Each terminal is labeled 
for quick connection of system elements.  The ICM-2900 provides access to the signals for up to 4 
axes (Two required for 5 or more axes).    

 

Block (4 PIN) Label I/O Description 
1 MOCMDZ O Z axis motor command to amp input (w / respect to 

ground) 

1 SIGNZ O Z axis sign output for input to stepper motor amp 

1 PWMZ O Z axis pulse output for input to stepper motor amp 

1 GND O Signal Ground 

2 MOCMDW O W axis motor command to amp input (w / respect 
to ground) 

2 SIGNW O W axis sign output for input to stepper motor amp 

2 PWMW O W axis pulse output for input to stepper motor amp 

2 GND O Signal Ground 

3 MOCMDX O X axis motor command to amp input (w / respect to 
ground) 

3 SIGNX O X axis sign output for input to stepper motor amp 

3 PWMX O X axis pulse output for input to stepper motor amp 

3 GND O Signal Ground 

4 MOCMDY O Y axis motor command to amp input (w / respect to 
ground) 

4 SIGNY O Y axis sign output for input to stepper motor amp 

4 PWMY O Y axis pulse output for input to stepper motor amp 

4 GND O Signal Ground 

5 OUT PWR I Isolated Power In for Opto-Isolation Option 

5 ERROR O Error output 

5 CMP O Circular Compare Output 

5 OUT GND O Isolated Ground for Opto-Isolation Option 

6 AMPENW O W axis amplifier enable 

6 AMPENZ O Z axis amplifier enable 

6 AMPENY O Y axis amplifier enable 

6 AMPENX O X axis amplifier enable 

7 OUT5 O General Output 5 

7 OUT6 O General Output 6 

7 OUT7 O General Output 7 

7 OUT8 O General Output 8 

8 OUT1 O General Output 1 

8 OUT2 O General Output 2 

8 OUT3 O General Output 3 



194  •  Appendices DMC-2X00  

8 OUT4 O General Output 4 

9 +5V O + 5 volts 

9 HOMEZ I Z axis home input 

9 RLSZ I Z axis reverse limit switch input 

9 FLSZ I Z axis forward limit switch input 

10 LSCOM I Limit Switch Common Input 

10 HOMEW I W axis home input 

10 RLSW I W axis reverse limit switch input 

10 FLSW I W axis forward limit switch input 

11 HOMEX I X axis home input 

11 RLSX I X axis reverse limit switch input 

11 FLSX I X axis forward limit switch input 

11 GND O Signal Ground 

12 HOMEY I Y axis home input 

12 RLSY I Y axis reverse limit switch input 

12 FLSY I Y axis forward limit switch input 

12 GND O Signal Ground 

13 IN5 I Input 5  

13 IN6 I Input 6  

13 IN7 I Input 7  

13 IN8 I Input 8  

14 XLATCH I Input 1 (Used for X axis latch input) 

14 YLATCH I Input 2 (Used for Y axis latch input) 

14 ZLATCH I Input 3 (Used for Z axis latch input) 

14 WLATCH I Input 4 (Used for W axis latch input) 

15 +5V O + 5 volts 

15 +12V O +12 volts 

15 -12V O -12 volts 

15 ANA GND O Isolated Analog Ground for Use with Analog 
Inputs 

16 INCOM I Input Common For General Use Inputs 

16 ABORT I Abort Input 

16 RESET I Reset Input 

16 GND O Signal Ground 

17 ANALOG5 I Analog Input 5 

17 ANALOG6 I Analog Input 6 

17 ANALOG7 I Analog Input 7 

17 ANALOG8 I Analog Input 8 

18 ANALOG1 I Analog Input 1 

18 ANALOG2 I Analog Input 2 

18 ANALOG3 I Analog Input 3 

18 ANALOG4 I Analog Input 4 



DMC-2X00 Appendices   195  

19 +5V O + 5 volts 

19 +INX I X Main encoder Index + 

19 -INX I X Main encoder Index - 

19 GND O Signal Ground 

20 +MAX I X Main encoder A+ 

20 -MAX I X Main encoder A- 

20 +MBX I X Main encoder B+ 

20 -MBX I X Main encoder B- 

21 +5V O + 5 volts 

21 +INY I Y Main encoder Index + 

21 -INY I Y Main encoder Index - 

21 GND O Signal Ground 

22 +MAY I Y Main encoder A+ 

22 -MAY I Y Main encoder A- 

22 +MBY I Y Main encoder B+ 

22 -MBY I Y Main encoder B- 

23 +5V O + 5 volts 

23 +INZ I Z Main encoder Index + 

23 -INZ I Z Main encoder Index - 

23 GND O Signal Ground 

24 +MAZ I Z Main encoder A+ 

24 -MAZ I Z Main encoder A- 

24 +MBZ I Z Main encoder B+ 

24 -MBZ I Z Main encoder B- 

25 +5V O + 5 volts 

25 +INW I W Main encoder Index + 

25 -INW I W Main encoder Index - 

25 GND O Signal Ground 

26 +MAW I W Main encoder A+ 

26 -MAW I W Main encoder A- 

26 +MBW I W Main encoder B+ 

26 -MBW I W Main encoder B- 



196  •  Appendices DMC-2X00  

ICM-2900 Drawing: 
 

ICM-

2.40" 

12.25"

Front Side Back

2.75" 2.40"

100 pin high
density connector
AMP #2-178238-9

Holes for 
mounting to DMC- 
2000 (2 holes) 

  

MOCMDZ 
SIGNZ 
PWMZ 

GND 
MOCMDX 

SIGNX 
PWMX 

GND 
OUT PWR 

ERROR 
CMP 

OUT GND 
OUT5 
OUT6 
OUT7 
OUT8 

MOCMDW

SIGNW 
PWMW 
GND 
MOCMDY

SIGNY 
PWMY 
GND 

+5V 
HOMEZ 

RLSZ 
FLSZ 

HOMEX 
RLSX 
FLSX 
GND 

IN5 
IN6 
IN7 
IN8 

+5V 
+12V 
-12V 

ANA GND 
ANALOG5 
ANALOG6 
ANALOG7 
ANALOG8 

+5V 
+INX 
-INX 
GND 
+5V 

+INY 
-INY 

GND 
+5V 

+INZ 
-INZ 

GND 
+5V 

+INW 
-INW 
GND 

AMPENW

AMPENZ

AMPENY

AMPENX

OUT1 
OUT2 
OUT3 
OUT4 
LSCOM

HOMEW

RLSW 
FLSW 
HOMEY

RLSY 
FLSY 
GND 
XLATCH

YLATCH

ZLATCH

WLATCH

INCOM 
ABORT 
RESET 
GND 
ANALOG1

ANALOG2

ANALOG3

ANALOG4

+MAX 
-MAX 
+MBX 
-MBX 
+MAY 
-MAY 
+MBY 
-MBY 
+MAZ 
-MAZ 
+MBZ 
-MBZ 
+MAW 
-MAW 
+MBW 
-MBW 

Solderless connections 
– use screwdriver to 
open contacts for 
insertion/removal of 
lead wires, part 
replacement:  PCD part 
# ELFF04240 

 
Figure A-1 



DMC-2X00 Appendices   197  

ICM-2908 Interconnect Module 
The ICM-2908 interconnect module provides easy connections between the auxiliary encoder 
connections of the DMC-2x00 series controller and other system elements.  The ICM-2908 accepts the 
36 pin high density cable (CABLE-36) from the controller and provides terminal blocks for easy 
access.  Each terminal is labeled for quick connection.  One ICM-1908 provides access to all of the 
auxiliary encoders on a DMC-2x00 (up to 8 axes). 



198  •  Appendices DMC-2X00  

ICM-2908 Drawing: 

ICM-2908

2.40"

12.25"

Front Side Back

2.75" 2.40"

Holes for
mounting to DMC-
2000 (2 holes)

Solderless
connections -
insert screwdriver
to open contacts
for insertion/
removal of lead
wires

+AAY

-AAY

+ABY

-ABY

+AAW

-AAW

+ABW

-ABW

GND

GND

GND

GND

+AAF

-AAF

+ABF

-ABF

+AAH

-AAH

+ABH

-ABH

+AAX

-AAX

+ABX

-ABX

+AAZ

-AAZ

+ABZ

-ABZ

+5V

+5V

+5V

+5V

+AAE

-AAE

+ABE

-ABE

+AAG

-AAG

+ABG

-ABG

36 pin high density
connector
AMP #2-178238-5
3M #10236-55-G3VC

 
Figure A-2 



DMC-2X00 Appendices   199  

PCB Layout of the ICM-2900: 

U1

RP3

U2

RP2

RP4
U1

M
A

X
332

U6 RP1

74
07

7407

AMPLIFIER
ENABLE
BUFFER

ANALOG
SWITCH

5V

12V

* FOR 5 VOLT AMPLIFIER ENABLE -
PLACE PIN 1 OF RP1 ON PIN LABELED
"5V"
* FOR 12 VOLT AMPLIFIER ENABLE -
PLACE PIN 1 OF RP1 ON PIN LABELED
"12V"

OPTIONAL OPTO-ISOLATION
CIRCUIT

100PIN HIGH DENSITY
CONNECTOR
AMP part # 2-178238-9

ICM-2900 BOARD LAYOUT  
 

 



200  •  Appendices DMC-2X00  

ICM-1900 Interconnect Module 
The ICM-1900 interconnect module provides easy connections between the DMC-2x00 series 
controllers and other system elements, such as amplifiers, encoders, and external switches.  The ICM- 
1900 accepts the 100-pin main cable and 25-pin auxiliary cable and breaks them into screw-type 
terminals.  Each screw terminal is labeled for quick connection of system elements.  An ICM-1900 is 
required for each set of 4 axes.  (Two required for DMC-2x50 thru DMC-2x80).  

The ICM-1900 is contained in a metal enclosure.  A version of the ICM-1900 is also available with 
servo amplifiers (see AMP-19x0). 

Features 
•  Separate DMC-2x00 cables into individual screw-type terminals 

•  Clearly identifies all terminals 

•  Provides jumper for connecting limit and input supplies to 5 V supply from PC 

•  Available with on-board servo drives (see AMP-19X0) 

•  Can be configured for AEN high or low 

NOTE: The part number for the 100-pin connector is #2-178238-9 from AMP 
   

Terminal Label I/O Description 
1 +AAX I X Auxiliary encoder A+ 

2 -AAX I X Auxiliary encoder A- 

3 +ABX I X Auxiliary encoder B+ 

4 -ABX I X Auxiliary encoder B- 

5 +AAY I Y Auxiliary encoder A+ 

6 -AAY I Y Auxiliary encoder A- 

7 +ABY I Y Auxiliary encoder B+ 

8 -ABY I Y Auxiliary encoder B- 

9 +AAZ I Z Auxiliary encoder A+ 

10 -AAZ I Z Auxiliary encoder A- 

11 +ABZ I Z Auxiliary encoder B+ 

12 -ABZ I Z Auxiliary encoder B- 

13 +AAW I W Auxiliary encoder A+ 

14 -AAW I W Auxiliary encoder A- 

15 +ABW I W Auxiliary encoder B+ 

16 -ABW I W Auxiliary encoder B- 

17 GND  Signal Ground 

18 +VCC  + 5 volts 

19 ISO OUT 
POWER 

O Isolated Output Power(for use with the opto-isolated output 
option) 

20 ERROR O Error signal 

21 RESET I Reset 

22 CMP O Circular Compare output 

23 MOCMDW O W axis motor command to amp input (w / respect to ground) 



DMC-2X00 Appendices   201  

24 SIGNW O W axis sign output for input to stepper motor amp 

25 PWMW O W axis pulse output for input to stepper motor amp 

26 MOCMDZ O Z axis motor command to amp input (w / respect to ground) 

27 SIGNZ O Z axis sign output for input to stepper motor amp 

28 PWMZ O Z axis pulse output for input to stepper motor amp 

29 MOCMDY O Y axis motor command to amp input (w / respect to ground) 

30 SIGNY O Y axis sign output for input to stepper motor amp 

31 PWMY O Y axis pulse output for input to stepper motor amp 

32 MOCMDX O X axis motor command to amp input (w / respect to ground) 

33 SIGNX O X axis sign output for input to stepper motor amp 

34 PWMX O X axis pulse output for input to stepper motor amp 

35 ISO OUT GND O Isolated Output Ground 

36 +VCC O + 5 volts 

37 AMPENW O W axis amplifier enable 

38 AMPENZ O Z axis amplifier enable 

39 AMPENY O Y axis amplifier enable 

40 AMPENX O X axis amplifier enable 

41 LSCOM I Limit Switch Common 

42 HOMEW I W axis home input 

43 RLSW I W axis reverse limit switch input 

44 FLSW I W axis forward limit switch input 

45 HOMEZ I Z axis home input 

46 RLSZ I Z axis reverse limit switch input 

47 FLSZ I Z axis forward limit switch input 

48 HOMEY I Y axis home input 

49 RLSY I Y axis reverse limit switch input 

50 FLSY I Y axis forward limit switch input 

51 HOMEX I X axis home input 

52 RLSX I X axis reverse limit switch input 

53 FLSX I X axis forward limit switch input 

54 +VCC  + 5 volts 

55 GND  Signal Ground 

56 INCOM I Input common (Common for general inputs and Abort input) 

57 XLATCH I Input 1 (Used for X axis latch input) 

58 YLATCH I Input 2 (Used for Y axis latch input) 

59 ZLATCH I Input 3 (Used for Z axis latch input) 

60 WLATCH I Input 4 (Used for W axis latch input) 

61 IN5 I Input 5  

62 IN6 I Input 6  

63 IN7 I Input 7  

64 IN8 I Input 8  

65 ABORT I Abort Input 



202  •  Appendices DMC-2X00  

66 OUT1 O Output 1 

67 OUT2 O Output 2 

68 OUT3 O Output 3 

69 OUT4 O Output 4 

70 OUT5 O Output 5 

71 OUT6 O Output 6 

72 OUT7 O Output 7 

73 OUT8 O Output 8 

74 GND  Signal Ground 

75 AN1 I Analog Input 1 

76 AN2 I Analog Input 2 

77 AN3 I Analog Input 3 

78 AN4 I Analog Input 4 

79 AN5 I Analog Input 5 

80 AN6 I Analog Input 6 

81 AN7 I Analog Input 7 

82 AN8 I Analog Input 8 

83 +MAX I X Main encoder A+ 

84 -MAX I X Main encoder A- 

85 +MBX I X Main encoder B+ 

86 -MBX I X Main encoder B- 

87 +INX I X Main encoder Index + 

88 -INX I X Main encoder Index - 

89 ANA GND  Analog Ground 

90 +VCC  + 5 volts 

91 +MAY I Y Main encoder A+ 

92 -MAY I Y Main encoder A- 

93 +MBY I Y Main encoder B+ 

94 -MBY I Y Main encoder B- 

95 +INY I Y Main encoder Index + 

96 -INY I Y Main encoder Index - 

97 +MAZ I Z Main encoder A+ 

98 -MAZ I Z Main encoder A- 

99 +MBZ I Z Main encoder B+ 

100 -MBZ I Z Main encoder B- 

101 +INZ I Z Main encoder Index + 

102 -INZ I Z Main encoder Index - 

103 GND  Signal Ground 

104 +VCC  + 5 volts 

105 +MAW I W Main encoder A+ 

106 -MAW I W Main encoder A- 

107 +MBW I W Main encoder B+ 



DMC-2X00 Appendices   203  

108 -MBW I W Main encoder B- 

109 +INW I W Main encoder Index + 

110 -INW I W Main encoder Index - 

111 +12V  +12 volts 

112 -12V  -12 volts 

ICM-1900 Drawing: 

11.620"
12.560"
13.500"

0.220"

0.440"

2.
00

0"

6.
88

0"
4.

94
0"

 
 

Figure A-3 

AMP-19x0 Mating Power Amplifiers 
The AMP-19x0 series are mating, brush-type servo amplifiers for the DMC-2x00.  The AMP-1910 
contains 1 amplifier: the AMP-1920, 2 amplifiers; the AMP-1930, 3 amplifiers; and the AMP-1940, 4 
amplifiers.  Each amplifier is rated for 7 amps continuous, 10 amps peak at up to 80 V.  The gain of the 
AMP-19x0 is 1 amp/V.  The AMP-19x0 requires an external DC supply.  The AMP-19x0 connects 
directly to the DMC-2x00, and screw type terminals are provided for connection to motors, encoders, 
and external switches. 

 

Features 
•  7 amps continuous, 10 amps peak; 20 to 80V 

•  Available with 1, 2, 3, or 4 amplifiers 

•  Connects directly to DMC-2x00 series controllers 



204  •  Appendices DMC-2X00  

•  Screw-type terminals for easy connection to motors, encoders, and switches 

•  Steel mounting plate with ¼” keyholes 

Specifications 
Minimum motor inductance: 1 mH 

PWM frequency: 30 kHz 

Ambient operating temperature: 0o to 70o C 

Dimensions: 

Weight: 

Mounting: Keyholes – ¼” ∅  

Gain: 1 amp/V 

Opto-Isolated Outputs for ICM-2900 / ICM-1900 / AMP-
19x0 

The ICM/AMP 1900 and ICM-2900 modules from Galil have an option for opto-isolated outputs.  

Standard Opto-Isolation and High Current Opto-isolation: 
The Opto-isolation option on the ICM-1900 has 2 forms: -opto (standard) and -optohc (high current).  
The standard version provides outputs with 4ma drive current / output with approximately 2 usec 
response time.  The high current version provides 25ma drive current / output with approximately 400 
usec response time. 

 

ISO OUT POWER (ICM-1900,PIN 19)
OUT POWER (ICM-2900)

ISO POWER GND (ICM-1900,PIN 35)
OUT GND (ICM-2900)

OUT[x] (66 - 73)

ICM-1900 / ICM-2900
CONNECTIONS

RP4=10K OHMS

FROM
CONTROLLER

+5V

OUT[x] TTL
 

Figure A-4 

The ISO OUT POWER (OUT POWER ON ICM-2900) and ISO POWER GND (OUT GND ON ICM-
2900) signals should be connected to an isolated power supply.  This power supply should be used 
only to power the outputs in order to obtain isolation from the controller.  The signal "OUT[x]" is one 
of the isolated digital outputs where X stands for the digital output terminals.   

The default configuration is for active high outputs.  If active low outputs are desired, reverse RP3 in 
it's socket.  This will tie RP3 to GND instead of VCC, inverting the sense of the outputs.   

NOTE:  If power is applied to the outputs with an isolated power supply but power is not applied to the 
controller, the outputs will float high (unable to sink current).  This may present a problem when using 
active high logic and care should be taken.  Using active low logic should avoid any problems 
associated with the outputs floating high.  



DMC-2X00 Appendices   205  

Configuring the Amplifier Enable for ICM-2900 / ICM-
1900  

The ICM-1900 and ICM-2900 modules can be configured to provide an active low signal to enable 
external amplifiers.  These modules can also be configured for voltage levels other than TTL. 

-LAEN Option: 
The standard configuration of the AEN signal is TTL active high.  In other words, the AEN signal will 
be high when the controller expects the amplifier to be enabled.  The polarity can be changed when 
using a Galil Interconnect Module.  To change the polarity from active high (5 volts = enable, zero 
volts = disable) to active low (zero volts = enable, 5 volts = disable), replace the socketed IC, 7407, 
with a 7406.  These IC’s are labeled U6 on the ICM-1900 and U2 on the ICM-2900 and can be 
accessed by removing the cover.  This option can be requested when ordering the unit by specifying 
the -LAEN option. 

-Changing the Amplifier Enable Voltage Level: 
To change the voltage level of the AEN signal, note the state of the resistor pack, labeled RP1 on the 
ICM-1900 / ICM-2900.  When Pin 1 is on the 5V mark, the output voltage is 0-5V.  To change to 12 
volts, pull the resistor pack and rotate it so that Pin 1 is on the 12 volt side.  If you remove the resistor 
pack, the output signal is an open collector, allowing the user to connect an external supply with 
voltages up to 24V. 

100-PIN
HIGH
DENSITY
CABLE

AMPENX

GND

ICM-1900 / ICM-2900DMC-2000

+5V+12V

SERVO MOTOR
AMPLIFIER

7407 Open Collector
Buffer.  The Enable signal
can be inverted by using a
7406.  Accessed by
removing ICM-2900 cover.

Connection to +5V or +12V made through
Resistor pack RP1.  Removing the resistor pack
allows the user to connect their own resistor to
the desired voltage level (Up to24V).  Accessed
by removing ICM cover.

 
Figure A-5 

 



206  •  Appendices DMC-2X00  

IOM-1964 Opto-Isolation Module for Extended I/O 

Description: 
• Provides 64 optically isolated inputs and outputs, each rated for 2mA at up to 28 VDC 

• Configurable as inputs or outputs in groups of eight bits 

• Provides 16 high power outputs capable of up to 500mA each 

• Connects to controller via 80 pin shielded cable 

• All I/O points conveniently labeled 

• Each of the 64 I/O points has status LED 

• Dimensions 6.8” x 11.4” 
 
 

0 1 32 5 764

J1

80 pin high
density connector

Banks 0 and 1
provide high
power output
capability.

Banks 2-7 are
standard banks.

Screw TerminalsHigh Current
Buffer chips (16)

IOM-1964
REV A

GALIL MOTION CONTROL
MADE IN USA

FOR INPUTS:
UX3
UX4

RPX4

FOR OUTPUTS:
UX1
UX2

RPX2
RPX3

 
Figure A-6 

Overview 
The IOM-1964 is an input/output module that connects to the motion controller cards from Galil, 
providing optically isolated buffers for the extended inputs and outputs of the controller.  The IOM-
1964 also provides 16 high power outputs capable of 500mA of current per output point.  The IOM-
1964 splits the 64 I/O points into eight banks of eight I/O points each, corresponding to the eight banks 



DMC-2X00 Appendices   207  

of extended I/O on the controller.  Each bank is individually configured as an input or output bank by 
inserting the appropriate integrated circuits and resistor packs.  The hardware configuration of the 
IOM-1964 must match the software configuration of the controller card. 

All DMC-2x00 series controllers have general purpose I/O connections.  On a DMC-2x10, -2x20, -
2x30, and -2x40 the standard uncommitted I/O consists of: eight optically isolated digital inputs, eight 
TTL digital outputs, and eight analog inputs. 

The DMC-2x00, however, has an additional 64 digital input/output points than the 16 described above 
for a total of 80 input/output points.  An 80 pin shielded cable connects from the 80 pin connector of 
the DMC-2x00 to the 80 pin high density connector on the IOM-1964 (J1).  Illustrations for this 
connection can be found on pages 10 and 11. 

Configuring Hardware Banks 
The extended I/O on the DMC-2x00 is configured using the CO command.  The banks of buffers on 
the IOM-1964 are configured to match by inserting the appropriate IC’s and resistor packs.  The layout 
of each of the I/O banks is identical.   

For example, here is the layout of bank 0: 
 

Bank 0

IN

OUT

R
P02  O

U
T

R
P04 IN

RP03 OUT

U03 U04

U01 U02

D0

RP01 O
U

TC6 17 18 19 20 21 22 23 24
Input Buffer IC's

Output Buffer IC's

Indicator LED's

Resistor Pack for
LED's

Resistor Pack for
outputs

Resistor Pack for
inputs

Resistor Pack for
outputs

 
Figure A-7 

All of the banks have the same configuration pattern as diagrammed above.  For example, all banks 
have Ux1 and Ux2 output optical isolator IC sockets, labeled in bank 0 as U01 and U02, in bank 1 as 
U11 and U12, and so on.  Each bank is configured as inputs or outputs by inserting optical isolator 
IC’s and resistor packs in the appropriate sockets.  A group of eight LED’s indicates the status of each 



208  •  Appendices DMC-2X00  

I/O point.  The numbers above the Bank 0 label indicate the number of the I/O point corresponding to 
the LED above it.   

Digital Inputs 
Configuring a bank for inputs requires that the Ux3 and Ux4 sockets be populated with NEC2505 
optical isolation integrated circuits.  The IOM-1964 is shipped with a default configuration of banks 2-
7 configured as inputs.  The output IC sockets Ux1 and Ux2 must be empty.  The input IC’s are labeled 
Ux3 and Ux4.  For example, in bank 0 the IC’s are U03 and U04, bank 1 input IC’s are labeled U13 
and U14, and so on.  Also, the resistor pack RPx4 must be inserted into the bank to finish the input 
configuration. 

Input Circuit

1/4 NEC2505

To DMC-1748* I/O

DMC-1748* GND

1/8 RPx4

I/OCn

I/On

x = bank number 0-7
n = input number 17-80

 
Figure A-8 

Connections to this optically isolated input circuit are done in a sinking or sourcing configuration, 
referring to the direction of current.  Some example circuits are shown below: 

 
Sinking Sourcing

+5V

GND +5V

GNDI/OCnI/OCn

I/On I/On

Current Current  
 

Figure A-9 

There is one I/OC connection for each bank of eight inputs.  Whether the input is connected as sinking 
or souring, when the switch is open no current flows and the digital input function @IN[n] returns 1.  
This is because of an internal pull up resistor on the DMC-2x40*.  When the switch is closed in either 
circuit, current flows.  This pulls the input on the DMC-2x40 to ground, and the digital input function 
@IN[n] returns 0.  Note that the external +5V in the circuits above is for example only.  The inputs are 
optically isolated and can accept a range of input voltages from 4 to 28 VDC. 

Active outputs are connected to the optically isolated inputs in a similar fashion with respect to current.  
An NPN output is connected in a sinking configuration, and a PNP output is connected in the sourcing 
configuration. 

 



DMC-2X00 Appendices   209  

Sinking Sourcing

+5V

PNP
output

GNDI/OCnI/OCn

I/On I/On
Current

NPN
output Current  

 
Figure A-10 

Whether connected in a sinking or sourcing circuit, only two connections are needed in each case.  
When the NPN output is 5 volts, then no current flows and the input reads 1.  When the NPN output 
goes to 0 volts, then it sinks current and the input reads 0.  The PNP output works in a similar fashion, 
but the voltages are reversed i.e. 5 volts on the PNP output sources current into the digital input and the 
input reads 0.  As before, the 5 volt is an example, the I/OC can accept between 4-28 volts DC. 

Note that the current through the digital input should be kept below 3 mA in order to minimize the 
power dissipated in the resistor pack.  This will help prevent circuit failures.  The resistor pack RPx4 is 
standard 1.5k ohm which is suitable for power supply voltages up to 5.5 VDC.  However, use of 24 
VDC for example would require a higher resistance such as a 10k ohm resistor pack. 

*The 1-4 axis models of the DMC-2x00 all work with the IOM-1964, all have identical extended I/O 
features. 

High Power Digital Outputs 
The first two banks on the IOM-1964, banks 0 and 1, have high current output drive capability.  The 
IOM-1964 is shipped with banks 0 and 1 configured as outputs.  Each output can drive up to 500mA of 
continuous current.  Configuring a bank of I/O as outputs is done by inserting the optical isolator 
NEC2505 IC’s into the Ux1 and Ux2 sockets.  The digital input IC’s Ux3 and Ux4 are removed.  The 
resistor packs RPx2 and RPx3 are inserted, and the input resistor pack RPx4 is removed.  

Each bank of eight outputs shares one I/OC connection, which is connected to a DC power supply 
between 4 and 28 VDC.  A 10k ohm resistor pack should be used for RPx3.  Here is a circuit diagram: 

1/4 NEC2505

1/8 RPx3

To DMC-2x40 +5V

DMC-2x40 I/O

I/On

I/OCn

VCC

IN

GND

OUT

IR6210

OUTCn

PWROUTn

1/8 RPx2

 
Figure A-11 

The load is connected between the power output and output common.  The I/O connection is for test 
purposes, and would not normally be connected.  An external power supply is connected to the I/OC 
and OUTC terminals, which isolates the circuitry of the DMC-2x40 controller from the output circuit.   



210  •  Appendices DMC-2X00  

 

PWROUTn

OUTCn

C
ur

re
nt

L
o
a
d

External
Isolated
Power
Supply

I/OCn VISO

GNDISO

Vpwr

 
Figure A-12 

The power outputs must be connected in a driving configuration as shown on the previous page.  Here 
are the voltage outputs to expect after the Clear Bit and Set Bit commands are given: 

 
Output Command  Result 

CBn Vpwr = Viso 

SBn  Vpwr = GNDiso 

Standard Digital Outputs 
The I/O banks 2-7 can be configured as optically isolated digital outputs; however these banks do not 
have the high power capacity as in banks 0-1.  In order to configure a bank as outputs, the optical 
isolator chips Ux1 and Ux2 are inserted, and the digital input isolator chips Ux3 and Ux4 are removed.  
The resistor packs RPx2 and RPx3 are inserted, and the input resistor pack RPx4 is removed.  

Each bank of eight outputs shares one I/OC connection, which is connected to a DC power supply 
between 4 and 28 VDC.  The resistor pack RPx3 is optional, used either as a pull up resistor from the 
output transistor’s collector to the external supply connected to I/OC or the RPx3 is removed resulting 
in an open collector output.  Here is a schematic of the digital output circuit: 

 
 
 

Internal Pullup

1/4 NEC2505

1/8 RPx3To DMC-2x40 +5V

DMC-2x40 I/O

I/On

I/OCn

OUTCn

1/8 RPx2

 
Figure A-13 



DMC-2X00 Appendices   211  

 
The resistor pack RPx3 limits the amount of current available to source, as well as affecting the low 
level voltage at the I/O output.  The maximum sink current is 2mA regardless of RPx3 or I/OC voltage, 
determined by the NEC2505 optical isolator IC.  The maximum source current is determined by 
dividing the external power supply voltage by the resistor value of RPx3. 

The high level voltage at the I/O output is equal to the external supply voltage at I/OC.  However, 
when the output transistor is on and conducting current, the low level output voltage is determined by 
three factors.  The external supply voltage, the resistor pack RPx3 value, and the current sinking limit 
of the NEC2505 all determine the low level voltage.  The sink current available from the NEC2505 is 
between 0 and 2mA.  Therefore, the maximum voltage drop across RPx3 is calculated by multiplying 
the 2mA maximum current times the resistor value of RPx3.  For example, if a 10k ohm resistor pack 
is used for RPx3, then the maximum voltage drop is 20 volts.  The digital output will never drop below 
the voltage at OUTC, however.  Therefore a 10 kΩ resistor pack will result in a low level voltage of 
0.7 to 1.0 volts at the I/O output for an external supply voltage between 4 and 21 VDC.  If a supply 
voltage greater than 21 VDC is used, a higher value resistor pack will be required.  

Output Command  Result 

CBn Vout = GNDiso 

SBn  
Vout = Viso 

The resistor pack RPx3 is removed to provide open collector outputs.  The same calculation for 
maximum source current and low level voltage applies as in the above circuit.  The maximum sink 
current is determined by the NEC2505, and is approximately 2mA. 

 
Open Collector

1/4 NEC2505

To DMC-2x40 +5V

DMC-2x40 I/O

I/On

OUTCn

1/8 RPx2

  
Figure A-14 

Electrical Specifications 
• I/O points, configurable as inputs or outputs in groups of 8 

Digital Inputs 
• Maximum voltage: 28 VDC 

• Minimum input voltage: 4 VDC 

• Maximum input current: 3 mA 



212  •  Appendices DMC-2X00  

High Power Digital Outputs 
• Maximum external power supply voltage: 28 VDC 

• Minimum external power supply voltage: 4 VDC 

• Maximum source current, per output: 500mA 

• Maximum sink current: sinking circuit inoperative 

Standard Digital Outputs 
• Maximum external power supply voltage: 28 VDC 

• Minimum external power supply voltage: 4 VDC 

• Maximum source current: limited by pull up resistor value 

• Maximum sink current: 2mA 

Relevant DMC Commands 
CO n 
  

Configures the 64 bits of extended I/O in 8 banks of 8 bits each.   
N = n2 + 2*n3 + 4*n4 + 8*n5 + 16*n6 + 32*n7 + 64*n8 + 128*n9  

where nx is a 1 or 0, 1 for outputs and 0 for inputs.  The x is the bank number 

OP 
m,n,o,p,q 

m = 8 standard digital outputs 
n = extended I/O banks 0 & 1, outputs 17-32 
o = extended I/O banks 2 & 3, outputs 33-48 
p =  extended I/O banks 4 & 5, outputs 49-64 
q = extended I/O banks 6 & 7, outputs 65-80 

SB n  Sets the output bit to a logic 1, n is the number of the output from 1 to 80. 

CB n Clears the output bit to a logic 0, n is the number of the output from 1 to 80. 

OB n,m  Sets the state of an output as 0 or 1, also able to use logical conditions. 

TI n Returns the state of 8 digital inputs as binary converted to decimal, n is the bank number +2. 

_TI n Operand (internal variable) that holds the same value as that returned by TI n. 

@IN[n]  Function that returns state of individual input bit, n is number of the input from 1 to 80. 

Screw Terminal Listing 
 

TERM LABEL DESCRIPTION BANK 
1 GND  Ground pins of J1 N/A 

2 5V  5V DC out from J1 N/A 

3 GND   Ground pins of J1 N/A 

4 5V 5V DC out from J1 N/A 

5 I/O80 I/O bit 80 7 

6 I/O79 I/O bit 79 7 

7 I/O78 I/O bit 78 7 

8 I/O77 I/O bit 77 7 

9 I/O76 I/O bit 76 7 

10 I/O75 I/O bit 75 7 



DMC-2X00 Appendices   213  

11 I/O74 I/O bit 74 7 

12 I/O73 I/O bit 73 7 

13 OUTC73-80 Out common for I/O 73-80 7 

14 I/OC73-80 I/O common for I/O 73-80 7 

15 I/O72 I/O bit 72 6 

16 I/O71 I/O bit 71 6 

17 I/O70 I/O bit 70 6 

18 I/O69 I/O bit 69 6 

19 I/O68 I/O bit 68 6 

20 I/O67 I/O bit 67 6 

21 I/O66 I/O bit 66 6 

22 I/O65 I/O bit 65 6 

23 OUTC65-72 Out common for I/O 65-72 6 

24 I/OC65-72 I/O common for I/O 65-72 6 

25 I/O64 I/O bit 64 5 

26 I/O63 I/O bit 63 5 

27 I/O62 I/O bit 62 5 

28 I/O61 I/O bit 61 5 

29 I/O60 I/O bit 60 5 

30 I/O59 I/O bit 59 5 

31 I/O58 I/O bit 58 5 

32 I/O57 I/O bit 57 5 

33 OUTC57-64 Out common for I/O 57-64 5 

34 I/OC57-64 I/O common for I/O 57-64 5 

35 I/O56 I/O bit 56 4 

36 I/O55 I/O bit 55 4 

37 I/O54 I/O bit 54 4 

38 I/O53 I/O bit 53   4 

39 I/O52 I/O bit 52 4 

40 I/O51 I/O bit 51 4 

41 I/O50 I/O bit 50 4 

42 I/O49 I/O bit 49 4 

43 *OUTC49-56 Out common for I/O 49-56 4 

44 I/OC49-56 I/O common for I/O 49-56 4 

45 I/O48 I/O bit 48 3 

46 I/O47 I/O bit 47 3 

47 I/O46 I/O bit 46 3 

48 I/O45 I/O bit 45 3 

49 I/O44 I/O bit 44 3 

50 I/O43 I/O bit 43 3 

51 I/O42 I/O bit 42 3 

52 I/O41 I/O bit 41 3 



214  •  Appendices DMC-2X00  

53 OUTC41-48 Out common for I/O 41-48 3 

54 I/OC41-48 I/O common for I/O 41-48 3 

55 I/O40 I/O bit 40 2 

56 I/O39 I/O bit 39 2 

57 I/O38 I/O bit 38 2 

58 I/O37 I/O bit 37 2 

59 I/O36 I/O bit 36 2 

60 I/O35 I/O bit 35 2 

61 I/O34 I/O bit 34 2 

62 I/O33 I/O bit 33 2 

63 OUTC33-40 Out common for I/O 33-40 2 

64 I/OC33-40 I/O common for I/O 33-40 2 

65 I/O32 I/O bit 32 1 

66 I/O31 I/O bit 31 1 

67 I/O30 I/O bit 30 1 

68 I/O29 I/O bit 29 1 

69 I/O28 I/O bit 28 1 

70 I/O27 I/O bit 27 1 

71 I/O26 I/O bit 26 1 

72 I/O25 I/O bit 25 1 

73 OUTC25-32 Out common for I/O 25-32 1 

74 *I/OC25-32 I/O common for I/O 25-32 1 

75 *OUTC25-32 Out common for I/O 25-32 1 

76 I/OC25-32 I/O common for I/O 25-32 1 

77 PWROUT32 Power output 32 1 

78 PWROUT31 Power output 31 1 

79 PWROUT30 Power output 30 1 

80 PWROUT29 Power output 29 1 

81 PWROUT28 Power output 28 1 

82 PWROUT27 Power output 27 1 

83 PWROUT26 Power output 26 1 

84 PWROUT25 Power output 25 1 

85 I/O24 I/O bit 24 0 

86 I/O23 I/O bit 23 0 

87 I/O22 I/O bit 22 0 

88 I/O21 I/O bit 21 0 

89 I/O20 I/O bit 20 0 

90 I/O19 I/O bit 19 0 

91 I/O18 I/O bit 18 0 

92 I/O17 I/O bit 17 0 

93 OUTC17-24 Out common for I/O 17-24 0 

94 *I/OC17-24 I/O common for I/O 17-24 0 



DMC-2X00 Appendices   215  

95 *OUTC17-24 Out common for I/O 17-24 0 

96 I/OC17-24 I/O common for I/O 17-24 0 

97 PWROUT24 Power output 24 0 

98 PWROUT23 Power output 23 0 

99 PWROUT22 Power output 22 0 

100 PWROUT21 Power output 21 0 

101 PWROUT20 Power output 20 0 

102 PWROUT19 Power output 19 0 

103 PWROUT18 Power output 18 0 

104 PWROUT17 Power output 17 0 

 
• Silkscreen on Rev A board is incorrect for these terminals. 

NOTE: The part number for the 100-pin connector is #2-178238-9 from AMP. 

CB-50-100 Adapter Board 
The CB-50-100 adapter board can be used to convert the CABLE-100 to (2) 50 Pin Ribbon Cables.  
The 50 Pin Ribbon Cables provide a versatile method of accessing the controller signals without the 
use of a Galil Interconnect Module. 

Connectors: 
JC8 50 PIN IDC J9 100 PIN HIGH DENSITY CONNECTOR 
1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 15 

16 16 

17 17 

18 18 

19 19 

20 20 



216  •  Appendices DMC-2X00  

21 21 

22 22 

23 23 

24 24 

25 25 

26 26 

27 27 

28 28 

29 29 

30 30 

31 31 

32 32 

33 33 

34 34 

35 35 

36 36 

37 37 

38 38 

39 39 

40 40 

41 41 

42 42 

43 43 

44 44 

45 45 

46 46 

47 47 

48 48 

49 49 

50 50 

 



DMC-2X00 Appendices   217  

 
JC6 50 PIN IDC J9 100 PIN HIGH DENSITY CONNECTOR 

1 51 
2 52 
3 53 
4 54 
5 55 
6 56 
7 57 
8 58 
9 59 
10 60 
11 61 
12 62 
13 63 
14 64 
15 65 
16 66 
17 67 
18 68 
19 69 
20 70 
21 71 
22 72 
23 73 
24 74 
25 75 
26 76 
27 77 
28 78 
29 79 
30 80 
31 81 
32 82 
33 83 
34 84 
35 85 
36 86 
37 87 
38 88 
39 89 
40 90 
41 91 
42 92 
43 93 
44 94 



218  •  Appendices DMC-2X00  

45 95 
46 96 
47 97 
48 98 
49 99 
50 100 

 

CB-50-100 Drawing: 
 

CB 50-100
REV A

GALIL MOTION
CONTROL

MADE IN USA

J9 - 100 pin connector
AMP part # 2-178238-9

JC6, JC8 - 50 pin
shrouded headers w/
center key

JC8 - pins 1-50 of J9
JC6 - pins 51-100 of J9

J9

JC6JC8

1/51

21/71

41/91

1/8"D, 4 places

1 1/4"

9/16"1/2"

1/8"

4 1/2"

1/8"

1/8"15/16"

Mounting bracket
for attaching
inside PC

 
 
Figure A-15 



DMC-2X00 Appendices   219  

 

CB 50-100
REV A

GALIL MOTION
CONTROL

MADE IN USA

JC6, JC8 - 50 pin
shrouded headers w/

center key

JC8 - pins 1-50 of J9
JC6 - pins 51-100 of J9

J9

JC6JC8

1/8"D, 4 places

J9 - 100 pin connector
AMP part # 2-178238-9
(Pin 1)

JC6 (IDC 50 Pin)
Pin1 (2.975", 0.9875" )

JC8 (IDC 50 Pin)
Pin1 (2.975", 0.6125" )

51

52
53

2
1

3

4

DETAIL

 
Figure A-16 

CB-50-80 Adapter Board 
The CB-50-80 adapter board can be used to convert the CABLE-80 to (2) 50 Pin Ribbon Cables.  The 
50 Pin Ribbon Cables provide a versatile method of accessing the extended I/O signals without the use 
of the Galil IOM-1964.   

The ribbon cables provided by the CB-50-80 are compatible with I/O mounting racks such as Grayhill 
70GRCM32-HL and OPTO-22 G4PB24.   

When using the OPTO-22 G4PB24 I/O mounting rack, the user will only have access to 48 of the 64 
I/O points available on the controller.  Block 5 and Block 9 must be configured as inputs and will be 
grounded by the I/O rack. 



220  •  Appendices DMC-2X00  

Connectors: 
JC8 and JC6: 50 Pin Male IDC 

J9: 80 Pin High Density Connector, AMP PART #3-178238-0 

JC8 J9 JC8 J9 

1 1 38 GND 
2 2 39 35 
3 3 40 GND 
4 4 41 36 
5 5 42 GND 
6 6 43 37 
7 7 44 GND 
8 8 45 38 
9 9 46 GND 
10 10 47 39 
11 11 48 GND 
12 12 49 +5V 
13 13 50 GND 
14 14  
15 15  
16 16  
17 17  
18 GND  
19 19  
20 GND  
21 21  
22 GND  
23 23  
24 GND  
25 25  
26 GND  
27 27  
28 GND  
29 29  
30 GND  
31 31  
32 GND  
33 32  
34 GND  
35 33  
36 GND  
37 34  

 
 
 
 
 
 
 
    



DMC-2X00 Appendices   221  

JC6 J9 (Continued)
1 41
2 42
3 43
4 44
5 45
6 46
7 47
8 48
9 49
10 50
11 51
12 52
13 53
14 54
15 55
16 56
17 57
18 GND
19 59
20 GND
21 61
22 GND
23 63
24 GND
25 65
26 GND
27 67
28 GND
29 69
30 GND
31 71
32 GND
33 72
34 GND
35 73
36 GND
37 74
38 GND
39 75
40 GND
41 76
42 GND
43 77
44 GND
45 78
46 GND
47 79
48 GND
49 +5V
50 GND



222  •  Appendices DMC-2X00  

CB-50-80 Drawing: 
 

CB 50-80
REV A1

GALIL MOTION
CONTROL

MADE IN USA

J9 - 80 pin connector
3M part # N10280-52E2VC
AMP part # 3-178238-0

JC6, JC8 - 50 pin
shrouded headers w/
center key

JC8 - pins 1-50 of J9
JC6 - pins 51-100 of J9

JC6JC8

1/8"D, 4 places

1 1/4"

9/16"1/2"

1/8"

4 1/2"

1/8"

1/8"
15/16"

Mounting bracket
for attaching
inside PC

J9

CB-50-80 Outline

 
Figure A-17 



DMC-2X00 Appendices   223  

CB 50-80
REV A

GALIL MOTION
CONTROL

MADE IN USA

JC6, JC8 - 50 pin
shrouded headers w/

center key

J9

JC6JC8

1/8"D, 4 placesJC6 (IDC 50 Pin)
Pin1 ()

JC8 (IDC 50 Pin)
Pin1 ( )

41
42

43
2

1

3
4

DETAIL

J9 - 80 pin connector
AMP part # 3-178238-0
(Pin 1)

CB-50-80 Layout

 
 

Figure A-18 



224  •  Appendices DMC-2X00  

TERM-1500 Operator Terminal 
Two types of terminals are offered from Galil; the hand-held unit and the panel mount unit.  Both have 
the same programming characteristics. 

 

Hand held unit is shown below: 

 
Figure A-19 

 

 

 

 

 

 



DMC-2X00 Appendices   225  

The panel mount terminal is shown below: 

 
Figure A-20 

Features 
� For easy data entry to DMC-2x00 motion controller 

� 4 line x 20 character Liquid Crystal Display 

� Full numeric keypad 

� Five programmable function keys 

� Available in Hand-held or Panel Mount 

� No external power supply required 

� Connects directly to RS232 port P2 via coiled cable 

Description 
The TERM-2000 is a compact ASCII terminal for use with the DMC-2x00 motion controller.  Its 
numeric keypad allows easy data entry from an operator.  The TERM-1500 is available with a male 
adapter for connection to P2 (Dataset). 

NOTE:  Since the TERM-1500 requires +5V on pin 9 of RS-232, it can only work with port 2 of the 
DMC-2x00. 

Specifications - Hand-Held 
Keypad  Key Tactile 4 row x 5character  

Display LCD with 5 by 7 character font  

 Power  5 volts, 30mA (from DMC-2x00)  

 



226  •  Appendices DMC-2X00  

Specifications - Panel Mount 
Keypad    30-Key; 5 rows x 6 columns ; 5x7 font  

Display 4 row x 20 character LCD 

Power 5 volts, 30mA  

Keypad Maps - Hand-Held  
30 Keys:  5 keys across, 6 down 

Single Key Output           
6 F1 (22) F2 (23) F3 (24) F4 (25) F5 (26) 

5  1 2 3  

4  4 5 6  

3  7 8 9  

2   0   

1 CTRL  SHIFT SPACE BKSPC ENTER 

 Shift Key Output   
6 A B C D E 

5 F G H I J 

4 K L M N O 

3 P Q R S T 

2 U V W X Y 

1 CTRL  SHIFT Z , ? 

CTRL Key Output    
6 (18) (16) (9) (4) (17) 

5 (19) (2) ! “ % 

4 * + / $ ; 

3 < > \ [ ] 

2 ^ - @ { } 

1 CTRL SHIFT ESC = # 

NOTE:  Values in parentheses are ASCII decimal values.  Key locations are represented by [m,n] 
where m is element column, n is element row. 

Example: 
 U is <Shift>[1,2]  



DMC-2X00 Appendices   227  

 # is <Cntrl>[5,1]  

Keypad Map - Panel Mount – 6 columns x 5 rows 

Single Key Output            
5 F1   1 2 3  

4 F2  4 5 6  

3 F3  7 8 9  

2 F4  - 0 .  

1 F5 CTRL SHIFT SPACE BKSPC ENTER 

Shift Key Output 
5 A F G H I J 

4 B K L M N O 

3 C P Q R S T 

2 D U V W X Y 

1 E CTRL SHIFT Z , ? 

CTRL Key Output    
5 (18) (19) (2) ! “ % 

4 (16) * + / $ ; 

3 (9) < > \ [ ] 

2 (4) ^ - @ { } 

1 (17) CTRL SHIFT ESC = # 

NOTE:  Values in parentheses are ASCII decimal values.  Key locations are represented by [m,n] 
where m is element column, n is element row. 

Escape Commands 
Escape codes can be used to control the TERM-1500 display, cursor style, and position, and sound 
settings. 

NOTE:  The escape character (hex 1B) can be sent through port 2 of the DMC-2x00 with special 
syntax {^27}: 

Example:  MG {P2}{^27},”H”       Sends escape H to the terminal from port 2 

Cursor Movement Commands 
ESC A  Cursor Up  

ESC B  Cursor Down  

ESC C  Cursor Right  

ESC D  Cursor Left  



228  •  Appendices DMC-2X00  

Erasing Display 
ESC E  Clear Display and Home  

ESC I  Clear Display  

ESC J  Cursor to End of Display  

ESC K  Cursor to End of Line  

ESC M  Line Containing Cursor  

Sounds 
ESC T  Short Bell  

ESC L  Long Bell  

ESC P  Click  

ESC Q  Alert  

Cursor Style 
ESC F  Underscore Cursor On  

ESC G Underscore Cursor Off   

ESC R Blinking Cursor On  

ESC S  Blinking Cursor Off  

Key Clicks (audible sounds from terminal) 
ESC U  Key Click Enable  

ESC V  Key Click Disable 

Identify (sends “TT!” then terminal firmware version) 
ESC Z  Send Terminal ID  

Cursor Position 
ESC Y  Pr Pc 

 

In the above sequence, Pr is the row number and Pc is the column number of the target cursor location.  
These parameters are formed by adding hexadecimal 1F to the row and column numbers.  Row and 
column numbers are absolute, with row 1, column 1 (Pr = H20, Pc = H20) representing the upper left 
corner of the display. 

Configuration 
<CNTRL><SHIFT>F1    Allows user to configure terminal; Follow prompts on display to change 
configuration   



DMC-2X00 Appendices   229  

Default Configuration: 
Baud Rate  9600 

Data bits  7  

Parity Ignore PE  

Display  enabled  

Repeat  Fast 

Echo  Disabled 

Handshake  Disabled 

Self Test  Disabled 

Key Click - Disabled     <Ctrl>Space <Shift> [2,2] 

Key Click - Enabled      <Ctrl>Space <Shift> [1,2] 

Clear Display and Home   <Ctrl>Space <Shift> [5,6] 

Function Keys 
<CNTRL><SHIFT>F3   Allows function keys to be configured; Follow prompts on display to change 
function keys   

Default Function Keys 
F1  22 decimal  

F2  23 decimal  

F3  24 decimal  

F4  25 decimal  

F5  26 decimal 

Input/Output of Data – DMC-2x00 Commands 
Refer to Chapter 7 in this manual for Data Communication commands. 

When using Port 2, use CC command to configure P2. 

Example: 
CC 9600,0,0,1  Configures P2  

MG{P2} “Hello There”, V1{F2.1}  Send message to P2  

IN{P2} “Enter Value”, NUM  Prompts operator for value   

Example: 
#A  

CI 0;CC 9600,0,0,1 #A Interrupt on any key; Configure P2  

MG {P2} “press F1 to start X”  Print Message to P2  

MG {P2} “Press F2 to start Y”  Print Message to P2  



230  •  Appendices DMC-2X00  

#B; JP#B;EN  End Program  

#COMINT Interrupt Routine  

JS #XMOVE,P2CH=F1  Jump to X move if F1  

JS #YMOVE,P2CH=F2  Jump to Y move if F2  

EN1,1  End, Re-enable comm interrupt & restore trip point 

#XMOVE;PR1000;BGX;EN  Move X routine  

#YMOVE;PR,1000;BGY;EN Move Y routine  

  

NOTE: F1 through F5 are used as dedicated keywords for testing function keys.  Do not use these as 
variables.  

6-Pin Modular Connector 
1 +5 volts   

2 Handshake in   

3 Handshake out   

4 Data in   

5 Data out   

6 Ground 

9-Pin D Adaptor - Male (For P2) 
1 CTS input  

2 Transmit Data - input  

3 Receive Data - output  

4 RTS - output  

5 Ground  

6 CTS - input 

 RTS - output  

 CTS - input  

 5V or no connect or sample clock with  jumpers  

NOTE:  Out and in are referenced to the terminal. 

Ordering Information 
TERM-1500H-P2  Hand-held terminal with female adapter  

TERM-1500P-P2  Panel Mount terminal with female adapter  



DMC-2X00 Appendices   231  

 
 

Coordinated Motion - Mathematical Analysis 
The terms of coordinated motion are best explained in terms of the vector motion.  The vector velocity, 
Vs, which is also known as the feed rate, is the vector sum of the velocities along the X and Y axes, Vx 
and Vy. 

 Vs Vx Vy= +2 2  

The vector distance is the integral of Vs, or the total distance traveled along the path.  To illustrate this 
further, suppose that a string was placed along the path in the X-Y plane.  The length of that string 
represents the distance traveled by the vector motion. 

The vector velocity is specified independently of the path to allow continuous motion.  The path is 
specified as a collection of segments.  For the purpose of specifying the path, define a special X-Y 
coordinate system whose origin is the starting point of the sequence.  Each linear segment is specified 
by the X-Y coordinate of the final point expressed in units of resolution, and each circular arc is 
defined by the arc radius, the starting angle, and the angular width of the arc.  The zero angle 
corresponds to the positive direction of the X-axis and the CCW direction of rotation is positive.  
Angles are expressed in degrees, and the resolution is 1/256th of a degree.  For example, the path 
shown in Fig. 12.2 is specified by the instructions: 

 VP            0,10000 

 CR            10000, 180, -90 

 VP            20000, 20000 

 



232  •  Appendices DMC-2X00  

10000 20000

20000

10000

Y

C D

B

A X
 

Figure A-21  - X-Y Motion Path 

The first line describes the straight line vector segment between points A and B.  The next segment is a 
circular arc, which starts at an angle of 180° and traverses -90°.  Finally, the third line describes the 
linear segment between points C and D.  Note that the total length of the motion consists of the 
segments: 

 A-B Linear  10000 units 

 B-C Circular  
R ∆θ π2

360
 = 15708 

 C-D Linear  1000 

  Total  35708 counts 

In general, the length of each linear segment is 

 L Xk Ykk = +2 2  

Where Xk and Yk are the changes in X and Y positions along the linear segment. The length of the 
circular arc is 

 L Rk k k= ∆Θ 2 360π  

The total travel distance is given by 

 D Lk

k

n

=
=

∑
1

 

The velocity profile may be specified independently in terms of the vector velocity and acceleration. 



DMC-2X00 Appendices   233  

For example, the velocity profile corresponding to the path of Fig. 12.2 may be specified in terms of 
the vector speed and acceleration. 

 VS 100000 

 VA 2000000 

The resulting vector velocity is shown in Fig. 12.3. 

0.05 0.357

10000

Velocity

time (s)
0.407Ta TaTs  

Figure A-22 - Vector Velocity Profile 

The acceleration time, Ta, is given by 

 T VS
VA

sa = = =
100000
2000000

0 05.  

The slew time, Ts, is given by 

 T D
VS

T ss a= − = = − =
35708

100000
0 05 0 307. .  

The total motion time, Tt, is given by 

 T D
VS

T st a= + = 0 407.  

The velocities along the X and Y axes are such that the direction of motion follows the specified path, 
yet the vector velocity fits the vector speed and acceleration requirements. 

For example, the velocities along the X and Y axes for the path shown in Fig. 12.2 are given in Fig. 
12.4. 

Fig. 12.4a shows the vector velocity.  It also indicates the position point along the path starting at A 
and ending at D.  Between the points A and B, the motion is along the Y axis.  Therefore, 

 Vy = Vs 

and 

 Vx = 0 

 

Between the points B and C, the velocities vary gradually and finally, between the points C and D, the 
motion is in the X direction. 



234  •  Appendices DMC-2X00  

A

B

D

(a)

(b)

(c)

time

C

 
Figure A-23 - Vector and Axes Velocities 

Example- Communicating with OPTO-22 SNAP-B3000-
ENET 

Controller is connected to OPTO-22 via handle F.  The OPTO-22’s IP address is 131.29.50.30.  The 
Rack has the following configuration: 

 Digital Inputs  Module 1 

 Digital Outputs  Module 2 

 Analog Outputs (+/-10V) Module 3 

 Analog Inputs (+/-10V) Module 4 

 
Instruction Interpretation 
#CONFIG Label 
IHF=131,29,50,30<502>2 Establish connection 
WT10  Wait 10 milliseconds 
JP #CFGERR,_IHF2=0  Jump to subroutine 
JS #CFGDOUT  Configure digital outputs 
JS #CFGAOUT Configure analog outputs  
JS #CFGAIN Configure analog inputs  
MBF = 6,6,1025,1 Save configuration to OPTO-22 



DMC-2X00 Appendices   235  

EN End 
  
#CFGDOUT Label 
MODULE=2 Set variable 
CFGVALUE=$180 Set variable 
NUMOFIO=4 Set variable 
JP #CFGJOIN Jump to subroutine 
  
#CFGAOUT Label 
MODULE=3 Set variable 
CFGVALUE=$A7 Set variable 
NUMOFIO=2 Set variable 
JP #CFGJOIN Jump to subroutine 
  
#CFGAIN Label 
MODULE=5 Set variable 
CFGVALUE=12 Set variable 
NUMOFIO=2 Set variable 
JP#CFGJOIN Jump to subroutine 
  
#CFGJOIN Label 
DM A[8] Dimension array 
I=0 Set variable 
#CFGLOOP Loop subroutine 
A[I]=0 Set array element 
I=I+1 Increment 
A[I]=CFGVALUE Set array element 
I=I+1 Increment 
JP #CFGLOOP,I<(2*NUMOFIO) Conditional statement 
MBF=6,16,632+(MODULE*8),NU
MOFIO*2,A[] 

Configure I/O using Modbus function code 16 where the starting 
register is 632+(MODULE*8), number of registers is 
NUMOFIO*2 and A[] contains the data. 

EN end 
  
#CFERR Label 
MG”UNABLE TO ESTABLISH 
CONNECTION” 

Message 

EN End 

 

Using the equation 

 

 I/O number = (Handlenum*1000) + ((Module-1)*4) + (Bitnum-1) 

 

MG @IN[6001] display level of input at handle 6, module 1, bit 2 



236  •  Appendices DMC-2X00  

SB 6006 set bit of output at handle 6, module 2, bit 3  

     or  to one 

OB 6006,1 

 

AO 608,3.6 set analog output at handle 6, module 53, bit 1 to 3.6 volts 

MG @AN[6017] display voltage value of analog input at handle6, module 5, bit 2 

 

 

 



DMC-2X00 Appendices   237  

DMC-2x00/DMC-1500 Comparison 
BENEFIT DMC-2x00 DMC-1500 

Access to parameters – real time data 
processing & recording 

Data Record - Block Data Transfer No DMA channel 

Easy to install – USB is self configuring Plug and Play USB not available 

Can capture and save array data Variable storage Option 

Parameters can be stored Array storage Option 

Firmware can be upgraded in field 
without removing controller from PC 

Flash memory for firmware EPROM for firmware which 
must be installed on controller 

Faster servo operation – good for very 
high resolution sensors 

12 MHz encoder speed for servos 8 MHz 

Faster stepper operation 3 MHz stepper rate 2 MHz 

Higher servo bandwidth 62 µsec/axis sample time 125 µsec/axis 

Higher resolution for analog inputs 8 analog inputs with 16-bit ADC option 7 inputs with 16-Bit option 

Improved EMI  100-pin high density connector 60-pin IDC, 26-pin IDC, 20-pin 
IDC (x2) 

For precise registration applications Output Position Compare Available as a special 

More flexible gearing Multiple masters allowed in gearing 
mode 

One master for gearing 

Binary command mode  Binary and ASCII communication 
modes 

ASCII only 

Gearing Multiple Gearing Masters Accepted Single Gearing Master Accepted 

Coordinated Motion 2 Sets of Coordinated Motion Accepted Single set of coordinated motion 
only 



238  •  Appendices DMC-2X00  

List of Other Publications 
"Step by Step Design of Motion Control Systems" 

 by Dr. Jacob Tal 

"Motion Control Applications" 

 by Dr. Jacob Tal 

"Motion Control by Microprocessors" 

 by Dr. Jacob Tal 

 

Training Seminars 
Galil, a leader in motion control with over 250,000 controllers working worldwide, has a proud 
reputation for anticipating and setting the trends in motion control.  Galil understands your need to 
keep abreast with these trends in order to remain resourceful and competitive.  Through a series of 
seminars and workshops held over the past 15 years, Galil has actively shared their market insights in a 
no-nonsense way for a world of engineers on the move.  In fact, over 10,000 engineers have attended 
Galil seminars.  The tradition continues with three different seminars, each designed for your particular 
skill set-from beginner to the most advanced. 

 

MOTION CONTROL MADE EASY 

WHO SHOULD ATTEND 

Those who need a basic introduction or refresher on how to successfully implement servo motion 
control systems. 

TIME: 4 hours (8:30 am-12:30 pm) 

 

ADVANCED MOTION CONTROL 

WHO SHOULD ATTEND 

Those who consider themselves a "servo specialist" and require an in-depth knowledge of motion 
control systems to ensure outstanding controller performance.  Also, prior completion of  "Motion 
Control Made Easy" or equivalent is required.  Analysis and design tools as well as several design 
examples will be provided. 

TIME: 8 hours (8:00 am-5:00 pm) 

 

PRODUCT WORKSHOP 

WHO SHOULD ATTEND 

Current users of Galil motion controllers.  Conducted at Galil's headquarters in Rocklin, CA, students 
will gain detailed understanding about connecting systems elements, system tuning and motion 
programming.  This is a "hands-on" seminar and students can test their application on actual hardware 
and review it with Galil specialists. 

TIME: Two days (8:30 am-5:00 pm) 

 



DMC-2X00 Appendices   239  

Contacting Us 
Galil Motion Control 

3750 Atherton Road 

Rocklin, CA 95765 

Phone:  916-626-0101 

Fax:  916-626-0102 

E-Mail Address: support@galilmc.com 

URL: www.galilmc.com 

FTP: www.galilmc.com/ftp 



240  •  Appendices DMC-2X00  

WARRANTY 
All products manufactured by Galil Motion Control are warranted against defects in materials and 
workmanship.  The warranty period for controller boards is 1 year.  The warranty period for all other 
products is 180 days. 

In the event of any defects in materials or workmanship, Galil Motion Control will, at its sole option, 
repair or replace the defective product covered by this warranty without charge.  To obtain warranty 
service, the defective product must be returned within 30 days of the expiration of the applicable 
warranty period to Galil Motion Control, properly packaged and with transportation and insurance 
prepaid.  We will reship at our expense only to destinations in the United States. 

Any defect in materials or workmanship determined by Galil Motion Control to be attributable to 
customer alteration, modification, negligence or misuse is not covered by this warranty. 

EXCEPT AS SET FORTH ABOVE, GALIL MOTION CONTROL WILL MAKE NO 
WARRANTIES EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO SUCH PRODUCTS, 
AND SHALL NOT BE LIABLE OR RESPONSIBLE FOR ANY INCIDENTAL OR 
CONSEQUENTIAL DAMAGES. 

COPYRIGHT (3-97) 

The software code contained in this Galil product is protected by copyright and must not be reproduced 
or disassembled in any form without prior written consent of Galil Motion Control, Inc. 

 



DMC-2X00 Index   241  

Index 

Abort.... 1, 37, 38, 73, 79, 113, 157, 158, 159, 177, 188, 
189 

Off-On-Error......................................... 37, 157, 159 
Stop Motion .................................................... 73, 79 

Absolute Position.............................. 31, 68, 69, 70, 115 
Absolute Value ..................................... 86, 97, 130, 158 
Acceleration.............. 2, 28, 68, 69, 71, 72, 75, 144, 232 
Accessories ............................................................... 192 
AMP-19x0 ........................................ 192, 200, 203, 204 
Amplifier Enable ...................... 5, 20, 40, 157, 192, 205 
Amplifier Gain.................................... 2, 5, 22, 172, 174 
Analog Input.. 1, 4, 36, 40, 72, 130, 132, 133, 135, 147, 

154, 177, 192, 194, 234, 237 
Analysis 

WSDK ................................ 12, 17, 22, 89, 179, 192 
Arm Latch................................................................. 106 
Array............... 1, 13, 68, 92, 93, 94, 113, 128, 132, 133 
Automatic Subroutine 

CMDERR ................................... 110, 123, 125, 126 
ININT ................................. 110, 121, 123, 146, 147 
LIMSWI........ 36, 110, 122, 123, 124, 158, 160, 189 
MCTIME .................................... 110, 115, 123, 125 
POSERR ..................................... 110, 122, 158, 159 
Position Error...................................................... 123 
TCPERR ............................................. 110, 123, 127 

Backlash ................................. 68, 98, 99, 100, 154, 155 
Dual Loop ......................................... 68, 98, 99, 100 

Baud Rate ................................... 15, 16, 17, 45, 46, 162 
Begin Motion...................................... 23, 27, 47, 74, 81 
Binary ........................... 1, 50, 59, 61, 62, 148, 212, 237 
Bit-Wise.................................................... 119, 128, 139 
Burn 26, 44 

EEPROM............................................ 1, 3, 149, 190 
Capture Data 

Record............................. 68, 94, 133, 134, 135, 237 
Circle ........................................................ 110, 151, 152 
Circular Interpolation ........................................... 35, 78 
Clear Bit...................................... 42, 144, 145, 188, 210 
Clear Sequence ......................................... 73, 75, 79, 81 
CMDERR ......................................... 110, 123, 125, 126 
Coordinated Motion 

Linear Interpolation34, 35, 67, 68, 73, 74, 75, 77, 78, 
83 

Data Record ................................51, 54, 56, 91, 92, 237 
Echo 46, 55, 57, 229 
Edit Mode....................................................32, 108, 123 
Editor ....................................................32, 33, 107, 108 
EEPROM ................................1, 3, 13, 14, 15, 149, 190 
Electronic Cam........................67, 68, 85, 86, 88, 89, 95 
Electronic Gearing ..........................1, 67, 68, 83, 84, 85 
Ellipse Scale................................................................81 
Enable 

Amplifier Enable.................5, 20, 40, 157, 192, 205 
Encoder 

Auxiliary Encoder1, 4, 11, 21, 28, 36, 41, 42, 84, 97, 
98, 99, 100, 146, 177, 178, 182, 189, 197 

Differential ....5, 21, 23, 42, 146, 162, 177, 178, 189 
Dual Encoder...........................................64, 99, 135 
Index Pulse..............................................21, 37, 103 
Quadrature.....3, 5, 98, 144, 150, 169, 177, 178, 188 

Error Code.......................................50, 63, 64, 113, 114 
Error Handling ..............................................ii, 109, 157 
Error Limit ..........20, 22, 29, 41, 43, 123, 157, 158, 188 

Off-On-Error .............................20, 37, 41, 157, 159 
Example 

Binary....................................................................62 
Change Speed along Vector Path ........................117 
Command Error...................................................125 
Command Error w/Multitasking .........................126 
Communication Interrupt ............................126, 138 
Continuous Dual Loop ..........................................99 
Contour..................................................................91 
Cut-to-Length......................................................136 
Daisy Chain...........................................................47 
Define Output Waveform Using AT...................118 
Design Example ....................................................29 
Electronic CAM ....................................................89 
Ethernet Communication Error ...........................127 
Example Applications .........................................150 
Gearing..................................................................84 
Generating an Array..............................................92 
Independent Axis ..................................................70 



242  •   DMC-2X00  

Input Interrupt............................................. 124, 147 
Inputting Numeric Data ...................................... 136 
Jog 72 
Latch ................................................................... 106 
Limit Switch ............................................... 123, 160 
Linear Interpolation .............................................. 75 
Motion Complete ................................................ 125 
Motion Smoothing .............................................. 101 
Multiple Move Sequence .................................... 116 
Multiple Move with Wait ................................... 118 
Opto 22 ............................................................... 234 
Output Bit ........................................................... 145 
Output Port ......................................................... 145 
Position Follower................................................ 147 
Printing a Variable.............................................. 141 
Record and Playback ............................................ 94 
Recording into An Array .................................... 135 
Repetitive Position Trigger................................. 116 
Set Bit and Clear Bit ........................................... 145 
Set Output when At Speed.................................. 117 
Sinusoidal Commutation................................. 19, 25 
Sinusoidal Motion................................................. 95 
Start Motion on Input.......................................... 116 
Start Motion on Switch....................................... 146 
Tangent Axis......................................................... 81 
Turn on output after move .................................. 145 
Using Inputs........................................................ 146 
Using Variables for Joystick............................... 132 
Wire Cutter ......................................................... 150 

Feedrate ........................................................ 74, 80, 152 
FIFO ............................................................. 56, 57, 112 
Filter Parameter 

Damping ....................................... 28, 162, 166, 171 
Gain .......................................... 28, 29, 32, 162, 166 
Integrator ........................................ 28, 29, 166, 172 
PID........................................ 2, 23, 28, 29, 166, 170 
Proportional .................................... 28, 29, 100, 166 
Stability................................. 99, 100, 161, 162, 166 

Find Edge...................................... 37, 55, 103, 105, 189 
Formatting ........................................................ 140, 143 
Frequency . 5, 28, 95, 102, 171, 173, 174, 177, 188, 204 
Function 

Arithmetic ........................... 107, 119, 128, 131, 144 
Gain 2, 3, 5, 22, 28, 29, 32, 162, 166 
Gear Ratio............................................................. 83, 84 
Gearing ........................... 1, 67, 68, 83, 84, 85, 179, 237 
Halt 74, 111, 112, 114, 115, 117, 118 
hardware 

Extended I/O....................................................... 207 
Hardware .................................................................... 36 

I/O 144 
Hardware Handshake................................ 14, 15, 45, 57 
Home Input......................................... 37, 103, 105, 177 
Homing............................................... 37, 103, 105, 189 
I/O 

Amplifier Enable .......... 5, 20, 21, 40, 157, 192, 205 

Digital Input1, 38, 130, 145, 207, 208, 209, 211, 212 
Digital Output 1, 130, 144, 192, 204, 207, 209, 210, 

212 
Home Input ...................................37, 103, 105, 177 
Limit Switch.36, 109, 113, 122, 123, 124, 132, 158, 

160, 162, 189 
ICM-1900............................40, 192, 200, 203, 204, 205 
ICM-290011, 16, 20, 21, 40, 41, 42, 157, 192, 193, 196, 

199, 204, 205 
Index Pulse....................................................21, 37, 103 
ININT........................................110, 121, 123, 146, 147 
Input Interrupt ...........................110, 121, 123, 146, 147 
Integrator...............................................28, 29, 166, 172 
Interconnect Module 

AMP-19x0...................................192, 200, 203, 204 
ICM-1900......................40, 192, 200, 203, 204, 205 
ICM-2900.11, 16, 20, 21, 40, 41, 42, 157, 192, 193, 

196, 199, 204, 205 
Internal Variable .................................34, 131, 132, 212 
Interrogation29, 30, 32, 64, 75, 112, 113, 141, 142, 179 
Invert.............................................23, 98, 162, 188, 204 
Jog 1, 67, 71, 72, 83, 138 
Jumper.......12, 13, 14, 17, 28, 40, 47, 96, 188, 190, 200 
Label ...............................................................14, 20, 28 

Program Label.....................................113, 114, 118 
Special Label...............................................109, 122 

Latch .......................................................4, 64, 105, 189 
Arm Latch ...........................................................106 
Position Capture ..................................................105 

Limit Switch........36, 110, 122, 123, 124, 158, 160, 189 
Linear Interpolation....34, 35, 67, 68, 73, 74, 75, 77, 78, 

83 
Logical Operator ...............................................119, 138 
Masking 

Bit-Wise ..............................................119, 128, 139 
Memory..1, 2, 3, 25, 26, 32, 49, 59, 107, 109, 113, 119, 

122, 123, 134, 149, 237 
Message ......15, 16, 45, 51, 57, 113, 123, 129, 140, 141 
Modelling..................................................................166 
Motion Complete 

MCTIME.....................................110, 115, 123, 125 
Motion Smoothing ............68, 69, 71, 96, 100, 101, 102 
Motor Command.................2, 19, 23, 25, 171, 179, 188 
Multitasking ..............................................111, 125, 126 
Off-On-Error .............................20, 37, 41, 55, 157, 159 
Operand 

Internal Variable............................34, 131, 132, 212 
Operator 

Bit-Wise ......................................................119, 128 
Output 

Amplifier Enable.................5, 20, 40, 157, 192, 205 
Digital Output 1, 130, 144, 192, 204, 207, 209, 210, 

212 
Error Output ..................................................43, 157 
Motor Command ...........2, 19, 23, 25, 171, 179, 188 
Output Compare ....................................................42 



DMC-2X00    243  

Step and Direction .............................................. 1, 2 
Position Error 

POSERR ............................. 110, 122, 123, 158, 159 
Position Limit ........................................................... 158 
Program Flow ........................................... 109, 114, 146 

Interrupt . 1, 109, 110, 117, 121, 122, 124, 126, 127, 
138, 139, 146, 147, 189, 230 

Stack ........................................... 122, 125, 127, 147 
Programming .......................... 37, 59, 67, 132, 162, 163 
Proportional Gain ....................................................... 28 
Protection 

Error Limit .... 20, 22, 29, 41, 43, 123, 157, 158, 188 
Torque Limit................................................... 22, 32 

PWM ............................................................ 5, 188, 204 
Quadrature .......... 3, 5, 98, 144, 150, 169, 177, 178, 188 
Quit 

Abort1, 37, 38, 73, 79, 113, 157, 159, 177, 188, 189 
Stop Motion .................................................... 73, 79 

Record .................................. 68, 94, 133, 134, 135, 237 
Latch ......................................... 4, 64, 105, 106, 189 
Teach .............................................................. 68, 94 

Register........................................................... 17, 18, 19 
Reset .. 2, 13, 14, 15, 21, 26, 27, 36, 38, 43, 50, 57, 157, 

159, 162, 188, 189, 190 
Scale 

Ellipse Scale ......................................................... 81 
Serial Port .... 14, 15, 16, 17, 18, 46, 110, 126, 127, 138, 

140, 141, 185, 186, 187, 190 
Set Bit ......................................... 42, 144, 145, 188, 210 
Sine 68, 88, 130 
Single-Ended ............................................ 5, 21, 23, 177 
Slew 28, 30, 68, 69, 103, 115, 150, 189 
Smoothing 1, 28, 68, 69, 71, 74, 75, 79, 81, 96, 97, 100, 

101, 102 
Software 

Terminal13, 16, 17, 19, 20, 22, 32, 33, 36, 40, 45, 46, 
48, 59, 107, 108, 111, 132, 179, 192 

WSDK .......................... 12, 17, 18, 22, 89, 179, 192 
Special Label ............................................ 109, 122, 160 
Stability .............................. 99, 100, 155, 161, 162, 166 
Stack ................................................. 122, 125, 127, 147 

Zero Stack................................................... 125, 147 
Step Motor ........................ 1, 3, 4, 12, 28, 102, 188, 189 

KS, Smoothing...... 28, 68, 96, 97, 98, 100, 101, 102 
Stop Code ................................... 64, 105, 113, 135, 162 
Stop Motion .......................................................... 73, 79 
Subroutine.... 36, 95, 107, 109, 110, 111, 118, 119, 120, 

122, 123, 124, 125, 126, 138, 146, 158, 160, 189 
Synchronization............................................ 1, 5, 44, 85 

Syntax .............................................................59, 60, 61 
Tangent .............................................68, 78, 80, 81, 130 
Teach.............................................................68, 94, 134 

Data Capture ...............................................134, 135 
Latch .................................4, 64, 105, 106, 135, 189 
Play-Back ..............................................................94 
Record .............................68, 94, 133, 134, 135, 237 

Tell Error Code .............................................63, 64, 114 
Tell Position ..............................30, 57, 64, 98, 132, 142 
Tell Torque............................................................23, 64 
Terminal...13, 16, 17, 19, 20, 22, 32, 33, 36, 40, 45, 46, 

48, 59, 107, 108, 111, 132, 179, 192 
Theory.......................................................................163 

Damping........................................28, 162, 166, 171 
Digital Filter ..................................59, 170, 172, 174 
Modeling .............................................163, 167, 171 
PID ........................................2, 23, 28, 29, 166, 170 
Stability .........................99, 100, 155, 161, 162, 166 

TIME.........................................................................133 
Timeout .......................................................................17 

MCTIME.....................................110, 115, 123, 125 
Torque Limit .........................................................22, 32 
Trigger ......................107, 114, 115, 116, 118, 188, 189 
Trippoint ..33, 69, 75, 80, 81, 91, 96, 97, 114, 115, 116, 

179 
Troubleshoot .............................................................161 
TTL 4, 5, 20, 36, 41, 42, 157, 177, 188, 205, 207 
Tuning...........................................1, 12, 23, 29, 99, 238 

Stability .........................99, 100, 155, 161, 162, 166 
WSDK.................................12, 17, 22, 89, 179, 192 

Upload.........................................................33, 134, 179 
User Unit...................................................................144 
Variable3, 13, 34, 65, 99, 107, 112, 113, 119, 128, 130, 

131, 132, 139, 140, 141, 144, 153, 179 
Internal Variable............................34, 131, 132, 212 

Vector Acceleration ........................................35, 75, 81 
Vector Deceleration ..................................35, 75, 76, 81 
Vector Mode .........................................................73, 78 

Circular Interpolation ..............................35, 78, 152 
Clear Sequence....................................73, 75, 79, 81 
Ellipse Scale....................................................74, 81 
Feedrate.........................................................80, 152 
Linear Interpolation34, 35, 67, 68, 73, 74, 75, 78, 83 
Tangent........................................68, 78, 80, 81, 130 

Vector Speed...........35, 73, 74, 75, 76, 79, 80, 117, 233 
Wire Cutter................................................................150 
WSDK.......................................12, 17, 22, 89, 179, 192 
Zero Stack .........................................................125, 147 

 


	Using This Manual
	ContentsUsing This ManualiiContentsiChapter 1 Overview1Introduction1Overview of Motor Types1Standard Servo Motor with +/- 10 Volt Command Signal2Brushless Servo Motor with Sinusoidal Commutation2Stepper Motor with Step and Direction Signals2Overview of A
	Chapter 1 Overview
	Introduction
	Overview of Motor Types
	Standard Servo Motor with +/- 10 Volt Command Signal
	Brushless Servo Motor with Sinusoidal Commutation
	Stepper Motor with Step and Direction Signals

	Overview of Amplifiers
	Amplifiers in Current Mode
	Amplifiers in Velocity Mode
	Stepper Motor Amplifiers

	DMC-2x00 Functional Elements
	Microcomputer Section
	Motor Interface
	Communication
	General I/O
	System Elements
	Motor
	Amplifier (Driver)
	Encoder
	Watch Dog Timer


	Chapter 2  Getting Started
	The DMC-2x00 Main Board
	The DMC-2000 Daughter Board
	The DMC-2200 Daughter Board
	Elements You Need
	Installing the DMC-2x00
	Step 1. Determine Overall Motor Configuration
	Standard Servo Motor Operation:
	Sinusoidal Commutation:
	Stepper Motor Operation

	Step 2. Install Jumpers on the DMC-2x00
	Master Reset and Upgrade Jumpers
	Opto-Isolation Jumpers
	Stepper Motor Jumpers
	(Optional) Motor Off Jumpers
	Communications Jumpers for DMC-2000
	Communications Jumpers for DMC-2100/DMC-2200

	Step 3a. Configure DIP switches on the DMC-2000
	Switch 1 - Master Reset
	Switch 2 - XON / XOFF
	Switch 3 - Hardware Handshake Mode
	Switch 4, 5 and 6 - Main Serial Port Baud Rate
	Switch 10 - USB

	Step 3b. Configure DIP switches on the DMC-2100
	Switch 1 - Master Reset
	Switch 2 - XON / XOFF
	Switch 3 - Hardware Handshake Mode

	Step 3c. Configure DIP switches on the DMC-2200
	Switch 1 - Master Reset
	Switch 2 - XON / XOFF
	Switch 3 - Hardware Handshake Mode
	Switch 4,5 and 6 - Main Serial Port Baud Rate
	Switch 7-Option
	Switch 8-Ethernet

	Step 4. Install the Communications Software
	Using Windows 98SE, NT, ME, 2000 or XP:

	Step 5. Connect AC Power to the Controller
	Step 6. Establish Communications with Galil Software
	Communicating through the Main Serial Communications Port
	Using Galil Software for DOS (serial communication only)
	Using Galil Software for Windows
	Using Non-Galil Communication Software

	Communicating through the Universal Serial Bus (USB)
	Communicating through the Ethernet
	Using Galil Software for Windows

	Sending Test Commands to the Terminal:

	Step 7. Determine the Axes to be Used for Sinusoidal Commutation
	Notes on Configuring Sinusoidal Commutation:
	Example: Sinusoidal Commutation Configuration using a DMC-2x70

	Step 8. Make Connections to Amplifier and Encoder.
	Step 9a. Connect Standard Servo Motors
	Inverting the Loop Polarity

	Step 9b. Connect Sinusoidal Commutation Motors
	Example: Sinusoidal Commutation Configuration using a DMC-2x70

	Step 9c. Connect Step Motors
	Step 10. Tune the Servo System

	Design Examples
	System Set-up
	Profiled Move
	Multiple Axes
	Objective: Move the four axes independently.
	Independent Moves
	The motion parameters may be specified independently as illustrated below.
	Position Interrogation
	The position error, which is the difference between the commanded position and the actual position can be interrogated with the instruction TE.
	Absolute Position
	Velocity Control
	Operation Under Torque Limit
	Interrogation
	Operation in the Buffer Mode
	Using the On-Board Editor
	Motion Programs with Loops
	Motion Programs with Trippoints
	Control Variables
	Linear Interpolation
	Circular Interpolation


	Chapter 3 Connecting Hardware
	Overview
	Using Optoisolated Inputs
	Limit Switch Input
	Home Switch Input
	Abort Input
	Reset Input
	Uncommitted Digital Inputs

	Wiring the Opto-Isolated Inputs
	The Opto-Isolation Common Point
	Using an Isolated Power Supply
	Bypassing the Opto-Isolation:

	Analog Inputs
	Amplifier Interface
	TTL Inputs
	The Auxiliary Encoder Inputs

	TTL Outputs
	General Use Outputs
	Output Compare
	Error Output

	Extended I/O of the DMC-2x00 Controller
	
	Interfacing to Grayhill or OPTO-22 G4PB24:



	Chapter 4  Communication
	Introduction
	RS232 Ports
	RS232 - Main Port {P1} DATATERM
	RS232 - Auxiliary Port {P2}DATASET
	*RS422 - Main Port {P1}
	*RS422 - Auxiliary Port {P2}
	RS-232 Configuration
	Baud Rate Selection
	Handshaking Modes
	Daisy-Chaining (DMC-2000 only)
	Example- Daisy Chain
	Synchronizing Sample Clocks in Daisy Chain



	Ethernet Configuration (DMC-2100/2200 only)
	Communication Protocols
	Addressing
	Communicating with Multiple Devices
	Multicasting
	Using Third Party Software

	Data Record
	Data Record Map
	Explanation of Status Information and Axis Switch Information
	Header Information - Byte 0, 1 of Header:
	Bytes 2, 3 of Header:
	Byte 2 is the low byte and byte 3 is the high byte

	General Status Information (1 Byte)
	Axis Switch Information (1 Byte)
	Axis Status Information (2 Byte)
	Coordinated Motion Status Information for S or T plane (2 Byte)

	Notes Regarding Velocity and Torque Information
	QZ Command

	Controller Response to Commands
	Unsolicited Messages Generated by Controller
	Galil Software Tools and Libraries

	Chapter 5  Command Basics
	Introduction
	Command Syntax - ASCII
	Coordinated Motion with more than 1 axis

	Command Syntax - Binary
	Binary Command Format
	Header Format:
	Byte 1
	Byte 2
	Byte 3
	Byte 4

	Datafields Format
	Example

	Binary Command Table

	Controller Response to DATA
	Interrogating the Controller
	Interrogation Commands
	Summary of Interrogation Commands
	Interrogating Current Commanded Values.
	Operands
	Command Summary


	Chapter 6  Programming Motion
	Overview
	Independent Axis Positioning
	Command Summary - Independent Axis
	Operand Summary - Independent Axis
	Examples
	Absolute Position Movement
	Multiple Move Sequence


	Independent Jogging
	Command Summary - Jogging
	Operand Summary - Independent Axis
	Examples
	Jog in X only
	Joystick Jogging


	Linear Interpolation Mode
	Specifying the Coordinate Plane
	Specifying Linear Segments
	Additional Commands
	Specifying Vector Speed for Each Segment
	Changing Feed Rate:

	Command Summary - Linear Interpolation
	Operand Summary - Linear Interpolation
	Example
	Linear Interpolation Motion
	Linear Move
	Multiple Moves


	Vector Mode: Linear and Circular Interpolation Motion
	Specifying the Coordinate Plane
	Specifying Vector Segments
	Additional commands
	Specifying Vector Speed for Each Segment:
	Changing Feed rate:
	Compensating for Differences in Encoder Resolution:
	Trippoints:
	Tangent Motion:

	Command Summary - Coordinated Motion Sequence
	Operand Summary - Coordinated Motion Sequence
	Example
	Tangent Axis
	Coordinated Motion


	Electronic Gearing
	Command Summary - Electronic Gearing
	Example
	Simple Master/Slave
	Electronic Gearing
	Gantry Mode
	Synchronize two conveyor belts with trapezoidal velocity correction.


	Electronic Cam
	Command Summary - Electronic CAM
	Operand Summary - Electronic CAM
	Example
	Electronic CAM


	Contour Mode
	Specifying Contour Segments
	Additional Commands
	Command Summary - Contour Mode
	General Velocity Profiles
	Example
	Generating an Array
	Contour Mode
	Teach (Record and Play-Back)
	Record and Playback Example


	Virtual Axis
	Ecam master example
	Sinusoidal Motion Example

	Stepper Motor Operation
	Specifying Stepper Motor Operation
	Stepper Motor Smoothing
	Monitoring Generated Pulses vs. Commanded Pulses
	Motion Complete Trip point
	Using an Encoder with Stepper Motors
	Command Summary - Stepper Motor Operation
	Operand Summary - Stepper Motor Operation

	Dual Loop (Auxiliary Encoder)
	Additional Commands for the Auxiliary Encoder
	Backlash Compensation
	Example
	Continuous Dual Loop
	Sampled Dual Loop


	Motion Smoothing
	Using the IT and VT Commands:
	Example
	Using the KS Command (Step Motor Smoothing):

	Homing
	Example
	Command Summary - Homing Operation
	Operand Summary - Homing Operation

	High Speed Position Capture (The Latch Function)
	Example


	Chapter 7 Application Programming
	Overview
	Using the DOS Editor to Enter Programs (DMC-2000 only)
	Edit Mode Commands
	Example

	Program Format
	Using Labels in Programs
	Example

	Special Labels
	Commenting Programs
	NO Command
	REM Command


	Executing Programs - Multitasking
	Debugging Programs
	Trace Commands ( DMC-2100/2200 only)
	Error Code Command
	Stop Code Command
	RAM Memory Interrogation Commands
	Operands
	Example

	Program Flow Commands
	Event Triggers & Trippoints
	DMC-2x00 Event Triggers
	Example- Multiple Move Sequence
	Example- Set Output after Distance
	Example- Repetitive Position Trigger
	Example - Start Motion on Input
	Example - Set Output when At Speed
	Example - Change Speed along Vector Path
	Example - Multiple Move with Wait
	Example- Define Output Waveform Using AT

	Conditional Jumps
	Command Format -  JP and JS
	Logical operators:
	Conditional Statements
	Multiple Conditional Statements
	Examples

	If, Else, and Endif
	Using the IF and ENDIF Commands
	Using the ELSE Command
	Nesting IF Conditional Statements
	Command Format -  IF, ELSE and ENDIF

	Subroutines
	Stack Manipulation
	Auto-Start Routine
	Automatic Subroutines for Monitoring Conditions
	Example - Limit Switch:
	Example - Position Error
	Example - Input Interrupt
	Example - Motion Complete Timeout
	Example - Command Error
	Example - Command Error  w/Multitasking
	Example - Communication Interrupt


	Mathematical and Functional Expressions
	Mathematical Operators
	Bit-Wise Operators
	Functions

	Variables
	Programmable Variables
	Assigning Values to Variables
	Assigning Variable Values to Controller Parameters
	Displaying the value of variables at the terminal
	Example - Using Variables for Joystick


	Operands
	Special Operands (Keywords)

	Arrays
	Defining Arrays
	Assignment of Array Entries
	Using a Variable to Address Array Elements

	Uploading and Downloading Arrays to On Board Memory
	Automatic Data Capture into Arrays
	Command Summary - Automatic Data Capture
	Data Types for Recording:
	Operand Summary - Automatic Data Capture
	Example - Recording into an Array

	Deallocating Array Space

	Input of Data (Numeric and String)
	Input of Data
	Example- Inputting Numeric Data
	Example- Cut-to-Length

	Operator Data Entry Mode
	Example

	Using Communication Interrupt
	Example
	Inputting String Variables


	Output of Data (Numeric and String)
	Sending Messages
	Specifying the Port for Messages:
	Formatting Messages
	Using the MG Command to Configure Terminals
	Summary of Message Functions

	Displaying Variables and Arrays
	Example - Printing a Variable and an Array element

	Interrogation Commands
	Using the PF Command to Format Response from Interrogation Commands
	Example
	Removing Leading Zeros from Response to Interrogation Commands
	Local Formatting of Response of Interrogation Commands

	Formatting Variables and Array Elements
	Local Formatting of Variables

	Converting to User Units

	Hardware I/O
	Digital Outputs
	Example- Set Bit and Clear Bit
	Example- Output Bit
	Example- Output Port
	Example - Turn on output after move

	Digital Inputs
	Example - Using Inputs to control program flow
	Example - Start Motion on Switch

	The Auxiliary Encoder Inputs
	Input Interrupt Function
	Example - Input Interrupt

	Analog Inputs
	Example - Position Follower (Point-to-Point)
	Example - Position Follower (Continuous Move)


	Extended I/O of the DMC-2x00 Controller
	Configuring the I/O of the DMC-2x00
	Saving the State of the Outputs in Non-Volatile Memory
	Accessing Extended I/O
	Interfacing to Grayhill or OPTO-22 G4PB24

	Example Applications
	Wire Cutter
	A-B Table Controller
	Speed Control by Joystick
	Position Control by Joystick
	Backlash Compensation by Sampled Dual-Loop

	Introduction
	Hardware Protection
	Output Protection Lines
	Input Protection Lines

	Software Protection
	Programmable Position Limits
	Example

	Off-On-Error
	Example

	Automatic Error Routine
	Example

	Limit Switch Routine
	Example



	Chapter 9 Troubleshooting
	Overview
	Installation
	Communication
	Stability
	Operation

	Chapter 10 Theory of Operation
	Overview
	Operation of Closed-Loop Systems
	System Modeling
	Motor-Amplifier
	Voltage Drive
	Current Drive
	Velocity Loop

	Encoder
	DAC
	Digital Filter
	ZOH

	System Analysis
	System Design and Compensation
	The Analytical Method
	Equivalent Filter Form



	Appendices
	Electrical Specifications
	Servo Control
	Stepper Control
	Input / Output
	Power

	Performance Specifications
	Minimum Servo Loop Update Time:

	Fast Update Rate Mode
	Connectors for DMC-2x00 Main Board
	DMC-2x00 Axes A-D High Density Connector
	DMC-2x00 Axes E-H High Density Connector
	DMC-2x00 Auxiliary Encoder 36 Pin High Density Connector
	DMC-2x00 Extended I/O 80 Pin High Density Connector
	RS-232-Main Port
	RS-232-Auxiliary Port
	USB - InUSB - Out
	Ethernet

	Cable Connections for DMC-2x00
	Standard RS-232 Specifications
	25 pin Serial Connector (Male, D-type)
	9 Pin Serial  Connector (Male, D-type)

	DMC-2x00 Serial Cable Specifications
	
	Cable to Connect Computer 25 pin to Main Serial Port

	Cable to Connect Computer 9 pin to Main Serial Port Cable (9 pin)
	Cable to Connect Computer 25 pin to Auxiliary Serial Port Cable (9 pin)
	Cable to Connect Computer 9 pin to Auxiliary Serial Port Cable (9 pin)


	Pin-Out Description for DMC-2x00
	
	Outputs
	Inputs


	Jumper Description for DMC-2x00
	Dimensions for DMC-2x00
	Accessories and Options
	ICM-2900 Interconnect Module
	ICM-2900 Drawing:

	ICM-2908 Interconnect Module
	ICM-2908 Drawing:
	PCB Layout of the ICM-2900:

	ICM-1900 Interconnect Module
	Features
	ICM-1900 Drawing:

	AMP-19x0 Mating Power Amplifiers
	Features
	Specifications

	Opto-Isolated Outputs for ICM-2900 / ICM-1900 / AMP-19x0
	Standard Opto-Isolation and High Current Opto-isolation:

	Configuring the Amplifier Enable for ICM-2900 / ICM-1900
	-LAEN Option:
	-Changing the Amplifier Enable Voltage Level:

	IOM-1964 Opto-Isolation Module for Extended I/O
	Description:
	Overview
	Configuring Hardware Banks
	Digital Inputs
	High Power Digital Outputs
	Standard Digital Outputs
	Electrical Specifications
	Digital Inputs
	High Power Digital Outputs
	Standard Digital Outputs

	Relevant DMC Commands
	Screw Terminal Listing

	CB-50-100 Adapter Board
	Connectors:
	CB-50-100 Drawing:

	CB-50-80 Adapter Board
	Connectors:
	CB-50-80 Drawing:

	TERM-1500 Operator Terminal
	Features
	Description
	Specifications - Hand-Held
	Specifications - Panel Mount
	Keypad Maps - Hand-Held
	Single Key Output
	Shift Key Output
	CTRL Key Output
	Example:

	Keypad Map � Panel Mount – 6 columns x 5 rows
	Single Key Output
	Shift Key Output
	CTRL Key Output
	Escape Commands
	Cursor Movement Commands
	Erasing Display
	Sounds
	Cursor Style
	Key Clicks (audible sounds from terminal)
	Identify \(sends “TT!” then terminal firmware ve
	Cursor Position

	Configuration
	Default Configuration:

	Function Keys
	Default Function Keys

	Input/Output of Data – DMC-2x00 Commands
	Example:
	Example:
	6-Pin Modular Connector
	9-Pin D Adaptor - Male (For P2)

	Ordering Information

	Coordinated Motion - Mathematical Analysis
	Example- Communicating with OPTO-22 SNAP-B3000-ENET
	DMC-2x00/DMC-1500 Comparison
	List of Other Publications
	Training Seminars
	Contacting Us
	WARRANTY

	Index

