LM35
Precision Centigrade Temperature Sensors

General Description
The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ± 1/4°C at room temperature and ± 3/4°C over a full −55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35’s low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 μA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a −55°C to +150°C temperature range, while the LM35C is rated for a −40°C to +110°C range (−10°C with improved accuracy). The LM35 series is available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.

Features
■ Calibrated directly in ° Celsius (Centigrade)
■ Linear + 10.0 mV/°C scale factor
■ ± 0.5°C accuracy (guaranteed) (at +25°C)
■ Rated for full −55°C to +150°C range
■ Suitable for remote applications
■ Low cost due to wafer-level trimming
■ Operates from 4 to 30 volts
■ Less than 60 μA current drain
■ Low self-heating, 0.08°C in still air
■ Nonlinearity only ± 1/4°C typical
■ Low impedance output, 0.1 Ω for 1 mA load

Typical Applications

Figure 1. Basic Centigrade Temperature Sensor (+2°C to +150°C)

Choose R1 = −Vs/50 µA
Vout = +1,500 mV at +150°C
= +250 mV at +25°C
= −550 mV at −55°C

Figure 2. Full-Range Centigrade Temperature Sensor
Connection Diagrams

TO-46
Metal Can Package*

*Case is connected to negative pin (GND)

Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DHB
See NS Package Number H03H

TO-92
Plastic Package

Order Number LM35CZ,
LM35CAZ or LM35DZ
See NS Package Number Z03A

SO-8
Small Outline Molded Package

N.C. = No Connection

Top View
Order Number LM35DM
See NS Package Number M08A

TO-220
Plastic Package*

*Tab is connected to the negative pin (GND).

Note: The LM35DT pinout is different than the discontinued LM35DP.

Order Number LM35DT
See NS Package Number TA03F
Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- **Supply Voltage**: +35V to −0.2V
- **Output Voltage**: +6V to −1.0V
- **Output Current**: 10 mA

Storage Temp.
- **TO-46 Package**: −60°C to +180°C
- **TO-92 Package**: −60°C to +150°C
- **SO-8 Package**: −65°C to +150°C
- **TO-220 Package**: −65°C to +150°C

Lead Temp.
- **TO-46 Package**: 300°C (Soldering, 10 seconds)
- **TO-92 and TO-220 Package**: 260°C (Soldering, 10 seconds)
- **SO Package**: Vapor Phase (60 seconds) 215°C
- **Infrared**: 220°C
- **ESD Susceptibility**: 2500V

Specified Operating Temperature Range: T_{MIN} to T_{MAX} (Note 2)
- **LM35, LM35A**: −55°C to +150°C
- **LM35C, LM35CA**: −40°C to +110°C
- **LM35D**: 0°C to +100°C

Electrical Characteristics

(Notes 1, 6)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM35A</th>
<th>LM35CA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Typical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tested Limit</td>
<td>Design Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Note 4)</td>
<td>(Note 5)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>$T_A = +25^\circ C$</td>
<td>±0.2</td>
<td>±0.5</td>
</tr>
<tr>
<td>(Note 7)</td>
<td>$T_A = -10^\circ C$</td>
<td>±0.3</td>
<td>±0.5</td>
</tr>
<tr>
<td></td>
<td>$T_A = T_{\text{MAX}}$</td>
<td>±0.4</td>
<td>±1.0</td>
</tr>
<tr>
<td></td>
<td>$T_A = T_{\text{MIN}}$</td>
<td>±0.4</td>
<td>±1.0</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>$T_{\text{MIN}} \leq T_A \leq T_{\text{MAX}}$</td>
<td>±0.18</td>
<td>±0.35</td>
</tr>
<tr>
<td>(Note 8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Gain</td>
<td>$T_{\text{MIN}} \leq T_A \leq T_{\text{MAX}}$</td>
<td>+10.0</td>
<td>+9.9, +10.1</td>
</tr>
<tr>
<td>(Average Slope)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$T_A = +25^\circ C$</td>
<td>±0.5</td>
<td>±1.0</td>
</tr>
<tr>
<td>(Note 3)</td>
<td>$0 \leq I_L \leq 1 \text{ mA}$</td>
<td>±1.0</td>
<td>±3.0</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>$T_A = +25^\circ C$</td>
<td>±0.01</td>
<td>±0.05</td>
</tr>
<tr>
<td>(Note 3)</td>
<td>$4V \leq V_S \leq 30V$</td>
<td>±0.02</td>
<td>±0.1</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>$V_S = +5V$, +25°C</td>
<td>56</td>
<td>67</td>
</tr>
<tr>
<td>(Note 9)</td>
<td>$V_S = +5V$</td>
<td>105</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>$V_S = +30V$, +25°C</td>
<td>56.2</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>$V_S = +30V$</td>
<td>105.5</td>
<td>133</td>
</tr>
<tr>
<td>Change of Quiescent Current</td>
<td>$4V \leq V_S \leq 30V$, +25°C</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>(Note 3)</td>
<td>$4V \leq V_S \leq 30V$</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Temperature Coefficient of</td>
<td>Quiescent Current</td>
<td>+0.39</td>
<td>+0.5</td>
</tr>
<tr>
<td>Minimum Temperature</td>
<td>for Rated Accuracy</td>
<td>+1.5</td>
<td>+2.0</td>
</tr>
<tr>
<td>Long Term Stability</td>
<td>$T_J = T_{\text{MAX}}$, for</td>
<td>±0.08</td>
<td>±0.08</td>
</tr>
<tr>
<td></td>
<td>1000 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Conditions</td>
<td>LM35</td>
<td>LM35C, LM35D</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typical</td>
<td>Tested Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 4)</td>
</tr>
<tr>
<td>Accuracy,</td>
<td>$T_A = +25^\circ C$</td>
<td>±0.4</td>
<td>±1.0</td>
</tr>
<tr>
<td>LM35, LM35C</td>
<td>$T_A = -10^\circ C$</td>
<td>±0.5</td>
<td>±1.0</td>
</tr>
<tr>
<td>(Note 7)</td>
<td>$T_A = T_{\text{MAX}}$</td>
<td>±0.8</td>
<td>±1.5</td>
</tr>
<tr>
<td>Accuracy,</td>
<td>$T_A = T_{\text{MIN}}$</td>
<td>±0.8</td>
<td>±1.5</td>
</tr>
<tr>
<td>LM35D</td>
<td>$T_A = +25^\circ C$</td>
<td>±0.6</td>
<td>±1.5</td>
</tr>
<tr>
<td>(Note 7)</td>
<td>$T_A = T_{\text{MAX}}$</td>
<td>±0.9</td>
<td>±1.5</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>$T_{\text{MIN}} \leq T_A \leq T_{\text{MAX}}$</td>
<td>±0.3</td>
<td>±0.5</td>
</tr>
<tr>
<td>Sensor Gain</td>
<td>$T_{\text{MIN}} \leq T_A \leq T_{\text{MAX}}$</td>
<td>±10.0</td>
<td>+9.8, +10.2</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$T_A = +25^\circ C$</td>
<td>±0.4</td>
<td>±2.0</td>
</tr>
<tr>
<td>(Note 3)</td>
<td>$T_{\text{MIN}} \leq T_A \leq T_{\text{MAX}}$</td>
<td>±0.5</td>
<td>±5.0</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>$T_A = +25^\circ C$</td>
<td>±0.01</td>
<td>±0.1</td>
</tr>
<tr>
<td>(Note 3)</td>
<td>$4V \leq V_S \leq 30V$</td>
<td>±0.02</td>
<td>±0.2</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>$V_S = +5V, +25^\circ C$</td>
<td>56</td>
<td>80</td>
</tr>
<tr>
<td>(Note 9)</td>
<td>$V_S = +5V$</td>
<td>105</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>$V_S = +30V, +25^\circ C$</td>
<td>56.2</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>$V_S = +30V$</td>
<td>105.5</td>
<td>161</td>
</tr>
<tr>
<td>Change of Quiescent Current</td>
<td>$4V \leq V_S \leq 30V, +25^\circ C$</td>
<td>0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>(Note 3)</td>
<td>$4V \leq V_S \leq 30V$</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Temperature Coefficient of Quiescent Current</td>
<td>0.39</td>
<td>-0.7</td>
<td>-0.39</td>
</tr>
<tr>
<td>Minimum Temperature for Rated Accuracy</td>
<td>In circuit of Figure 1, $I_L = 0$</td>
<td>+1.5</td>
<td>+2.0</td>
</tr>
<tr>
<td>Long Term Stability</td>
<td>$T_J = T_{\text{MAX}}$ for 1000 hours</td>
<td>±0.08</td>
<td>±0.08</td>
</tr>
</tbody>
</table>

Units (Max.): °C

Note 1: Unless otherwise noted, these specifications apply: $-55^\circ C \leq T_J \leq +150^\circ C$ for the LM35 and LM35A; $-40^\circ C \leq T_J \leq +110^\circ C$ for the LM35C and LM35CA; and $0^\circ C \leq T_J \leq +100^\circ C$ for the LM35D. $V_S = +5Vdc$ and $I_{\text{LOAD}} = 50 \mu A$, in the circuit of Figure 2. These specifications also apply from $+2^\circ C$ to T_{MAX} in the circuit of Figure 1. Specifications in **boldface** apply over the full rated temperature range.

Note 2: Thermal resistance of the TO-46 package is $400^\circ C/W$, junction to ambient, and $24^\circ C/W$ junction to case. Thermal resistance of the TO-92 package is $180^\circ C/W$ junction to ambient. Thermal resistance of the small outline molded package is $220^\circ C/W$ junction to ambient. Thermal resistance of the TO-220 package is $90^\circ C/W$ junction to ambient. For additional thermal resistance information see table in the Applications section.

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

Note 4: Tested Limits are guaranteed and 100% tested in production.

Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

Note 6: Specifications in **boldface** apply over the full rated temperature range.

Note 7: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

Note 8: Quiescent current is defined in the circuit of Figure 1.

Note 9: Quiescent current is defined in the circuit of Figure 1.

Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.

Note 11: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Note 12: See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” or the section titled “Surface Mount” found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Typical Performance Characteristics

Thermal Resistance
Junction to Air

Thermal Time Constant

Thermal Response in Still Air

Thermal Response in Stirred Oil Bath

Minimum Supply Voltage vs. Temperature

Quiescent Current vs. Temperature (In Circuit of Figure 1.)

Quiescent Current vs. Temperature (In Circuit of Figure 2.)

Accuracy vs. Temperature (Guaranteed)

Accuracy vs. Temperature (Guaranteed)
Applications

The LM35 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about 0.01˚C of the surface temperature.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM35 die would be at an intermediate temperature between the surface temperature and the air temperature. This is especially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.

To minimize this problem, be sure that the wiring to the LM35, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM35 die’s temperature will not be affected by the air temperature.

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance, θJA)

<table>
<thead>
<tr>
<th>Condition</th>
<th>TO-46, no heat sink</th>
<th>TO-46*, small heat fin</th>
<th>TO-92, no heat sink</th>
<th>TO-92**, small heat fin</th>
<th>SO-8, no heat sink</th>
<th>SO-8**, small heat fin</th>
<th>TO-220, no heat sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Still air</td>
<td>400˚C/W</td>
<td>100˚C/W</td>
<td>180˚C/W</td>
<td>140˚C/W</td>
<td>220˚C/W</td>
<td>110˚C/W</td>
<td>90˚C/W</td>
</tr>
<tr>
<td>Moving air</td>
<td>100˚C/W</td>
<td>40˚C/W</td>
<td>90˚C/W</td>
<td>70˚C/W</td>
<td>105˚C/W</td>
<td>90˚C/W</td>
<td>26˚C/W</td>
</tr>
<tr>
<td>Still oil</td>
<td>100˚C/W</td>
<td>40˚C/W</td>
<td>90˚C/W</td>
<td>70˚C/W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stirred oil</td>
<td>50˚C/W</td>
<td>30˚C/W</td>
<td>45˚C/W</td>
<td>40˚C/W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Clamped to metal, Infinite heat sink)

Still air (24˚C/W) Moving air (55˚C/W)

*Wakefield type 201, or 1” disc of 0.020” sheet brass, soldered to case, or similar.
**TO-92 and SO-8 packages glued and leads soldered to 1” square of 1/16” printed circuit board with 2 oz. foil or similar.
Typical Applications

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 3. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 4.

When the LM35 is applied with a 200Ω load resistor as shown in Figure 5, Figure 6 or Figure 8 it is relatively immune to wiring capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from V_IN to ground and a series R-C damper such as 75Ω in series with 0.2 or 1 µF from output to ground are often useful. These are shown in Figure 13, Figure 14, and Figure 16.
Typical Applications (Continued)

![FIGURE 10. Fahrenheit Thermometer](DS005516-10)

![FIGURE 11. Centigrade Thermometer (Analog Meter)](DS005516-11)

![FIGURE 12. Fahrenheit Thermometer Expanded Scale Thermometer](DS005516-12)

![FIGURE 13. Temperature To Digital Converter (Serial Output) (+128°C Full Scale)](DS005516-13)

![FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATE™ Outputs for Standard Data Bus to µP Interface) (128°C Full Scale)](DS005516-14)
* = 1% or 2% film resistor
Trim \(R_B \) for \(V_B = 3.075V \)
Trim \(R_C \) for \(V_C = 1.955V \)
Trim \(R_A \) for \(V_A = 0.075V + 100mV/˚C \times T_{ambient} \)
Example, \(V_A = 2.275V \) at 22˚C

FIGURE 15. Bar-Graph Temperature Display (Dot Mode)

FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output

(2˚C to +150˚C; 20 Hz to 1500 Hz)
Block Diagram

[Diagram of a temperature sensor circuit with components labeled]

V_{IN} = 10 mV/°C
0.125 R2

DS05516-23
TO-46 Metal Can Package (H)
Order Number LM35H, LM35AH, LM35CH,
LM35CAH, or LM35DH
NS Package Number H03H

SO-8 Molded Small Outline Package (M)
Order Number LM35DM
NS Package Number M08A
Power Package TO-220 (T)
Order Number LM35DT
NS Package Number TA03F
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.